版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古翁牛特旗2025届数学八年级第一学期期末统考试题试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.某工厂的厂门形状如图(厂门上方为半圆形拱门),现有四辆装满货物的卡车,外形宽都是2.0米,高分别为2.8米,3.1米,3.4米,3.7米,则能通过该工厂厂门的车辆数是()(参考数据:,,)A.1 B.2 C.3 D.42.有下列五个命题:①如果,那么;②内错角相等;③垂线段最短;④带根号的数都是无理数;⑤三角形的一个外角大于任何一个内角.其中真命题的个数为()A.1 B.2 C.3 D.43.点A(a,4)、点B(3,b)关于x轴对称,则(a+b)2010的值为()A.0B.﹣1C.1D.720104.如图,在平面直角坐标系中,点,,,和,,,分别在直线和轴上,,,,是以,,,为顶点的等腰直角三角形.如果点,那么点的纵坐标是()A. B. C. D.5.如图所示的方格纸,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形,那么涂法共有()种.A.6 B.5 C.4 D.36.“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒,组成,两根棒在点相连并可绕转动,点固定,,点,可在槽中滑动,若,则的度数是()A.60° B.65° C.75° D.80°7.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD8.下列分式中,是最简分式的是()A. B. C. D.9.如图汽车标志中不是中心对称图形的是()A. B. C. D.10.已知一个等腰三角形的腰长是,底边长是,这个等腰三角形的面积是()A. B. C. D.11.如图,在直角坐标系中,点、的坐标分别为和,点是轴上的一个动点,且、、三点不在同一条直线上,当的周长最小时,点的纵坐标是()A.0 B.1 C.2 D.312.已知一次函数y=kx+b的图象经过点(0,﹣1)与(﹣2,0),则不等式kx+b>0的解集是()A.x<﹣2 B.x>﹣2 C.x<﹣1 D.x>﹣1二、填空题(每题4分,共24分)13.已知一次函数y=kx+b(k≠0)的图象与x轴交于(﹣5,0),则关于x的一元一次方程kx+b=0的解为_____.14.某人一天饮水1679mL,精确到100mL是_____.15.观察下列等式:;;......从上述等式中找出规律,并利用这一规律计算:=___________.16.如图,在中,,的垂直平分线交于点,交于点.若,的度数为________.17.已知正数x的两个不同的平方根是2a﹣3和5﹣a,则x的值为______.18.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点E,F分别在边AB,AC上,将△AEF沿直线EF翻折,点A落在点P处,且点P在直线BC上.则线段CP长的取值范围是____.三、解答题(共78分)19.(8分)如图,相交于点,.(1)求证:;(2)若,求的度数.20.(8分)解分式方程:(1);(2)21.(8分)如图,已知和均是等边三角形,点在上,且.求的度数.22.(10分)某公司市场营销部的营销员有部分收入按照业务量或销售额提成,即多卖多得.营销员的月提成收入(元)与其每月的销售量(万件)成一次函数关系,其图象如图所示.根据图象提供的信息,解答下列问题:(1)求出(元)与(万件)(其中)之间的函数关系式;(2)已知该公司营销员李平12月份的销售量为1.2万件,求李平12月份的提成收入.23.(10分)先化简,再求值:,其中m=9.24.(10分)方程与分解因式(1)解方程:;(2)分解因式:.25.(12分)已知,求,的值.26.如图,已知△ABC和△BDE都是等边三角形,且A,E,D三点在一直线上.请你说明DA﹣DB=DC.
参考答案一、选择题(每题4分,共48分)1、B【分析】如图,在直角△COD中,根据勾股定理求出CD的长,进而可得CB的长,然后与四辆车的车高进行比较即得答案.【详解】解:∵车宽是2米,∴卡车能否通过,只要比较距厂门中线1米处高度与车高即可.如图,在直角△COD中,∵OC=2,OD=1,∴米,∴CB=CD+BD=1.73+1.6=3.33米.∵2.8<3.33,3.1<3.33,3.4>3.33,3.7>3.33,∴这四辆车中车高为2.8米和3.1米的能够通过,而车高为3.4米和3.7米的则不能通过.故选:B.【点睛】本题考查了勾股定理在实际中的应用,难度不大,解题的关键是正确理解题意、熟练掌握勾股定理.2、A【分析】①根据任何非零数的平方均为正数即得;②根据两直线平行内错角相等即得;③根据直线外一点与直线上所有点的连线段中,垂线段最短即得;④根据无理数的定义:无限不循环小数是无理数即得;⑤根据三角形外角的性质:三角形的一个外角大于和它不相邻的任何一个内角即得.【详解】∵当时,∴命题①为假命题;∵内错角相等的前提是两直线平行∴命题②是假命题;∵直线外一点与直线上所有点的连线段中,垂线段最短,简称“垂线段最短”∴命题③是真命题;∵有理数∴命题④是假命题;∵在一个钝角三角形中,与钝角相邻的外角是锐角,且这个锐角小于钝角∴命题⑤是假命题.∴只有1个真命题.故选:A.【点睛】本题考查了平方根的性质,平行线的性质,垂线公理,无理数的定义及三角形外角的性质,正确理解基础知识的内涵和外延是解题关键.3、C【解析】根据关于关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,可得a、b的值,进而得到答案.【详解】∵点A(a,4)、点B(3,b)关于x轴对称,∴a=3,b=﹣4,∴(a+b)2010=(3-4)2010=1.故选C.【点睛】本题考查了关于x轴对称点的坐标特点,关键是掌握关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.4、A【分析】设点A2,A3,A4…,A2019坐标,结合函数解析式,寻找纵坐标规律,进而解题.【详解】解:在直线,,,设,,,,,,,,,则有,,,,又△,△,△,,都是等腰直角三角形,,,,.将点坐标依次代入直线解析式得到:,,,,,又,,,,,,故选:A.【点睛】此题主要考查了一次函数点坐标特点,等腰直角三角形斜边上高等于斜边长一半,解题的关键是找出规律.5、A【分析】根据轴对称的概念作答,如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴进行分析,得出共有6处满足题意.【详解】选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,2处,3处,4处,5处,6处,选择的位置共有6处.故选:A.【点睛】本题考查了轴对称图形的定义,根据定义构建轴对称图形,成为轴对称图形每种可能性都必须考虑到,不能有遗漏.6、D【分析】根据OC=CD=DE,可得∠O=∠ODC,∠DCE=∠DEC,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC据三角形的外角性质即可求出∠ODC数,进而求出∠CDE的度数.【详解】∵,∴,,设,∴,∴,∵,∴,即,解得:,.故答案为D.【点睛】本题考查等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.7、D【解析】A.添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B.添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D.添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意.故选D.8、B【分析】根据最简分式的定义进行判断即可得解.【详解】解:A.,故本选项不是最简分式;B.的分子、分母没有公因数或公因式,故本选项是最简分式;C.,故本选项不是最简分式;D.,故本选项不是最简分式.故选:B【点睛】本题考查了最简分式,熟记最简分式的定义是进行正确判断的关键.9、B【分析】中心对称图形,是把一个图形绕一个点旋转180°后能和原来的图形重合.【详解】A、C、D中的汽车标志都满足中心对称图形的定义,都属于中心对称图形,而选项B中的汽车标志绕其圆心旋转180°后,不能和原来的图形重合,所以不是中心对称图形.故选B.【点睛】考核知识点:中心对称图形的识别.10、D【分析】根据题意画出图形,过点A作AD⊥BC于点D,根据勾股定理求出AD的长,进而可得出结论.【详解】解:如图所示,
过点A作AD⊥BC于点D,
∵AB=AC=5,BC=8,
∴BD=BC=4,
∴AD=,∴S△ABC=BC•AD=×8×3=1.
故选D.【点睛】本题考查的是勾股定理和等腰三角形的性质,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.11、C【分析】如解析图作B点关于y轴的对称点B′,连接AB′交y轴一点C点,根据两点之间线段最短,这时△ABC的周长最小,求出直线AB′的解析式为,所以,直线AB′与y轴的交点C的坐标为(0,2).【详解】作B点关于y轴的对称点B′,连接AB′交y轴一点C点,如图所示:∵点、的坐标分别为和,∴B′的坐标是(-2,0)∴设直线AB′的解析式为,将A、B′坐标分别代入,解得∴直线AB′的解析式为∴点C的坐标为(0,2)故答案为C.【点睛】此题主要考查平面直角坐标系中一次函数与几何问题的综合,解题关键是根据两点之间线段最短得出直线解析式.12、A【分析】写出一次函数图象在x轴上方所对应的自变量的范围即可.【详解】解:∵一次函数y=kx+b的图象经过点(0,﹣1)与(﹣1,0),∴不等式kx+b>0的解集为x<﹣1.故选:A.【点睛】本题考查关于一次函数与一元一次不等式的题目,在解题时,认真体会一次函数与一元一次不等式之间的内在联系,理解一次函数的增减性是解题的关键.二、填空题(每题4分,共24分)13、x=﹣1.【分析】根据一次函数图象与x轴交点的横坐标就是对应的关于x的一元一次方程的解,可直接得出答案.【详解】解:∵一次函数y=kx+b(k≠0)的图象与x轴交于(﹣1,0),∴关于x的一元一次方程kx+b=0的解为x=﹣1.故答案为x=﹣1.【点睛】本题考查了一次函数与一元一次方程:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.14、1.7×103ml【分析】先用科学记数法表示,再根据精确度求解.【详解】解:1679mL=1.679×103mL,所以1679mL精确到100mL是1.7×103mL.故答案为:1.7×103mL.【点睛】本题考查了近似数和有效数字,属于基本题型,掌握求解的方法是解题关键.15、1【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.【详解】第1个等式为:,第2个等式为:,第3个等式为:,归纳类推得:第n个等式为:(其中,n为正整数),则,,,,,故答案为:1.【点睛】本题考查了二次根式的加减法与乘法运算,依据已知等式,正确归纳出一般规律是解题关键.16、38°【分析】设∠A的度数为x,根据线段的垂直平分线的性质得到DB=DA,用x表示出∠ABC、∠C的度数,根据三角形内角和定理列式计算即可.【详解】解:设∠A的度数为x,
∵MN是AB的垂直平分线,
∴DB=DA,
∴∠DBA=∠A=x,
∵AB=AC,
∴∠ABC=∠C=33°+x,
∴33°+x+33°+x+x=180°,
解得x=38°.
故答案为:38°.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17、49【解析】因为一个正数的平方根有两个,它们互为相反数,所以2a﹣3+5﹣a=0,解得:a=﹣2,所以2a﹣3=﹣7,因为﹣7是正数x的一个平方根,所以x的值是49,故答案为:49.18、【解析】根据点E、F在边AB、AC上,可知当点E与点B重合时,CP有最小值,当点F与点C重合时CP有最大值,根据分析画出符合条件的图形即可得.【详解】如图,当点E与点B重合时,CP的值最小,此时BP=AB=3,所以PC=BC-BP=4-3=1,如图,当点F与点C重合时,CP的值最大,此时CP=AC,Rt△ABC中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP的最大值为5,所以线段CP长的取值范围是1≤CP≤5,故答案为1≤CP≤5.【点睛】本题考查了折叠问题,能根据点E、F分别在线段AB、AC上,点P在直线BC上确定出点E、F位于什么位置时PC有最大(小)值是解题的关键.三、解答题(共78分)19、(1)见解析;(2)34°【分析】(1)根据HL证明Rt△ABC≌Rt△BAD;(2)利用全等三角形的性质证明即可.【详解】解:(1)证明:∵,∴和都是直角三角形,在和中,,∴;(2)解:在中,∵,∴,由(1)可知,∴,∴,【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,“HL”;全等三角形的对应边相等.20、(1)x=2;(2)x=2【解析】试题分析:(1)观察可得最简公分母是(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解;
(2)观察可得最简公分母是x(x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.试题解析:(1)方程两边乘x+1,得2x-x-1=1.解得x=2.经检验,x=2是原方程的解.(2)方程两边乘x(x-1),得x+4=3x.解得x=2.经检验,x=2是原方程的解.21、【分析】根据等边三角形的性质可证明△ABD≌△ACE,根据全等三角形的性质得到BD=CE,∠ACE=∠B=60°,进而得到DC=CE,∠DCE=120°,根据等腰三角形的性质以及三角形内角和定理即可得出结论.【详解】∵与均是等边三角形,∴,,,∴,∴,∴,,∴,,∴.【点睛】本题考查了等边三角形的性质以及等腰三角形的判定.证明三角形△ABD≌△ACE是解答本题的关键.22、(1);(2)【分析】(1)用待定系数法,列二元一次方程组,可得一次函数关系式;
(2)将x=1.2代入(1)中求得的函数关系式,可得12月份提成收入.【详解】(1)设营业员月提成收入y与每月销售量x的函数关系式为:y=kx+b,将(0,600)、(2,2200)代入y=kx+b,得,解得,∴y=800x+600(x≥0);(2)当x=1.2时,y=800×1.2+600=1560,答:李平12月份的提成收入为156
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《职业农民培育》课件
- 2024年乡镇组织员个人年终工作总结
- 《旅行社的战略管理》课件
- 协力共赢:团队力量
- 酒店前厅保安执勤要领
- 保险行业销售技巧培训总结
- 2001年天津高考语文真题及答案(图片版)
- 媒体行业客服工作感想
- 景观设计师年终总结7篇
- 2023年项目管理人员安全培训考试题(能力提升)
- 常宝精特能源概况
- 第六章传质基本概念
- API-685-中文_
- 政治经济学结构图解
- 服装品质管理人员工作手册
- 国家开放大学电大专科《兽医基础》2023-2024期末试题及答案试卷编号:2776
- 初三毕业班后期管理措施
- 示教机械手控制系统设计
- 氧化铝生产工艺教学(拜耳法)
- 选矿学基础PPT课件
- 安利食品经销商合同协议范本模板
评论
0/150
提交评论