2025届江西省上饶广丰区六校联考数学八上期末检测模拟试题含解析_第1页
2025届江西省上饶广丰区六校联考数学八上期末检测模拟试题含解析_第2页
2025届江西省上饶广丰区六校联考数学八上期末检测模拟试题含解析_第3页
2025届江西省上饶广丰区六校联考数学八上期末检测模拟试题含解析_第4页
2025届江西省上饶广丰区六校联考数学八上期末检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江西省上饶广丰区六校联考数学八上期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.若,则下列不等式正确的是()A. B. C. D.2.如图,等腰三角形ABC底边BC的长为4cm,面积为12cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF上一点,则△BDM的周长最小值为()A.5cm B.6cm C.8cm D.10cm3.如图,小方格都是边长为1的正方形,则△ABC中BC边上的高是()A.1.6 B.1.4 C.1.5 D.24.下列因式分解正确的是()A.4-x²+3x=(2-x)(2+x)+3xB.-x²-3x+4=(x+4)(x-1)C.1-4x+4x²=(1-2x)²D.x²y-xy+x3y=x(xy-y+x²y)5.等腰三角形有一个外角是110°,则其顶角度数是()A.70° B.70°或40° C.40° D.110°或40°6.已知:如图,在△ABC中,D为BC的中点,AD⊥BC,E为AD上一点,∠ABC=60°,∠ECD=40°,则∠ABE=()A.10° B.15° C.20° D.25°7.下列选项中最简分式是()A. B. C. D.8.甲乙丙丁四个同学玩接力游戏,合作定成一道分式计算题,要求每人只能在前一人的基础上进行一步计算,再将结果传递给下一人,最后完成计算,过程如图所示,接力中出现错误的是()A.只有乙 B.甲和丁 C.丙和丁 D.乙和丁9.约分的结果是()A. B. C. D.10.已知a,b,c是三角形的三边,如果满足(a﹣3)2++|c﹣5|=0,则三角形的形状是()A.底与腰部相等的等腰三角形 B.等边三角形C.钝角三角形 D.直角三角形二、填空题(每小题3分,共24分)11.化简的结果为________.12.当m=____时,关于x的分式方程无解.13.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为元,足球的单价为元,依题意,可列方程组为____________.14.生物学家发现一种病毒,其长度约为0.00000032米,数据0.00000032用科学记数法表示为________.15.二元一次方程组的解为_________.16.在直角坐标系中,直线y=x+1与y轴交于点A,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C3C2…,A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,图中阴影部分三角形的面积从左到右依次记为S1、S2、S3、…Sn,则Sn的值为__(用含n的代数式表示,n为正整数).17.对于实数x,我们规定[X)表示大于x的最小整数,如[4)═5,[)=2,[﹣2.5)=﹣2,现对64进行如下操作:64[)=9[)="4"[)=3[[)=2,这样对64只需进行4次操作后变为2,类似地,只需进行4次操作后变为2的所有正整数中,最大的是.18.分解因式:3a2+6a+3=_____.三、解答题(共66分)19.(10分)如图,已知为等边三角形,AE=CD,,相交于点F,于点Q.(1)求证:≌;(2)若,求的长.20.(6分)已知:,.(1)求的值;(2)的值.21.(6分)过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=6,AC=10,EC=,求EF的长.22.(8分)如图,在中,是边上的高,是的角平分线,.(1)求的度数;(2)若,求的长.23.(8分)已知某种商品去年售价为每件元,可售出件.今年涨价成(成),则售出的数量减少成(是正数).试问:如果涨价成价格,营业额将达到,求.24.(8分)先化简,再求值:,其中、互为负倒数.25.(10分)某市为了鼓励居民在枯水期(当年11月至第二年5月)节约用电,规定7:00至23:00为用电高峰期,此期间用电电费y1(单位:元)与用电量x(单位:度)之间满足的关系如图所示;规定23:00至第二天早上7:00为用电低谷期,此期间用电电费y2(单位:元)与用电量x(单位:元)之间满足如表所示的一次函数关系.(1)求y2与x的函数关系式;并直接写出当0≤x≤180和x>180时,y1与x的函数关系式;(2)若市民王先生一家在12月份共用电350度,支付电费150元,求王先生一家在高峰期和低谷期各用电多少度.低谷期用电量x度…80100140…低谷期用电电费y2元…202535…26.(10分)阅读下面的解题过程,求的最小值.解:∵=,而,即最小值是0;∴的最小值是5依照上面解答过程,(1)求的最小值;(2)求的最大值.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据不等式的基本性质,逐项判断即可.【详解】解:∵m>n,∴m-2>n-2,∴选项A不符合题意;

∵m>n,∴,∴选项B符合题意;∵m>n,∴4m>4n,∴选项C不符合题意;

∵m>n,∴-5m<-5n,∴选项D不符合题意;

故选:B【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.2、C【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】如图,连接AD.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得:AD=6(cm).∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+BC=6+×4=6+2=8(cm).故选C.【点睛】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.3、B【分析】根据勾股定理和三角形的面积公式即可得到结论.【详解】解:∵BC==5,∵S△ABC=4×4﹣×1×1﹣×3×4﹣×3×4=,∴△ABC中BC边上的高==,故选:B.【点睛】此题重点考查学生对勾股定理和三角形面积的理解,掌握勾股定理和三角形面积计算公式是解题的关键.4、C【解析】A.中最后结果不是乘积的形式,所以不正确;B.-x²-3x+4=(x+4)(1-x),故B错误;C.1-4x+4x²=(1-2x)²,故C正确;D.x²y-xy+x3y=xy(x-1+x²),故D错误.故选:C.5、B【分析】题目给出了一个外角等于110°,没说明是顶角还是底角的外角,所以要分两种情况进行讨论.【详解】解:①当110°角为顶角的外角时,顶角为180°﹣110°=70°;②当110°为底角的外角时,底角为180°﹣110°=70°,顶角为180°﹣70°×2=40°.故选B.【点睛】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.6、C【详解】解:∵D为BC的中点,AD⊥BC,∴EB=EC,AB=AC∴∠EBD=∠ECD,∠ABC=∠ACD.又∵∠ABC=60°,∠ECD=40°,∴∠ABE=60°﹣40°=20°,故选C.【点睛】本题考查等腰三角形的性质,线段垂直平分线的性质及三角形外角和内角的关系.7、A【解析】一个分式的分子与分母没有非零次的公因式时(即分子与分母互素)叫最简分式.【详解】A.,是最简分式;B.,不是最简分式;C.=,不是最简分式;D.=3x+1,不是最简分式.故选:A【点睛】本题考核知识点:最简分式.解题关键点:理解最简分式的意义.8、C【分析】直接利用分式的加减运算法则计算得出答案.【详解】=﹣=﹣==,则接力中出现错误的是丙和丁.故选:C.【点睛】此题主要考查了分式的加减运算,正确进行通分运算是解题关键.9、D【分析】先将分式分子分母因式分解,再约去公因式即得.【详解】解:故选:D.【点睛】本题考查分式的基本性质的应用中的约分,找清楚分子分母的公因式是解题关键.10、D【解析】首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,再根据勾股定理的逆定理判断其形状是直角三角形.【详解】解:∵(a-3)2≥0,b-4

≥0,|c-5|≥0,

∴a-3=0,b-4=0,c-5=0,

解得:a=3,b=4,c=5,

∵3

2

+4

2

=9+16=25=5

2

∴a

2

+b

2

=c

2

,∴以a,b,c为边的三角形是直角三角形.

故选D.【点睛】本题主要考查了非负数的性质与勾股定理的逆定理,此类题目在考试中经常出现,是考试的重点.二、填空题(每小题3分,共24分)11、【分析】首先把分子、分母分解因式,然后约分即可.【详解】解:==【点睛】本题主要考查了分式的化简,正确进行因式分解是解题的关键.12、-6【解析】把原方程去分母得,2x+m=-(x-3)①,把x=3代入方程①得,m=-6,故答案为-6.13、【分析】根据总费用列出一个方程,根据单价关系列出一个方程,联立方程即可.【详解】由题意得:4个篮球和5个足球共花费435元,可列方程:4x+5y=435,篮球的单价比足球的单价多3元,可列方程:x-y=3,联立得.【点睛】本题考查二元一次方程的应用,根据题意列出方程是关键.14、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000032=3.2×;故答案为.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15、【分析】方程组利用加减消元法求出解即可.【详解】解,①+②得:3x=9,解得:x=3,把x=3代入①得:y=2,则方程组的解为,故答案为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.16、.【解析】试题分析:∵直线,当x=0时,y=1,当y=0时,x=﹣1,∴OA1=1,OD=1,∴∠ODA1=45°,∴∠A2A1B1=45°,∴A2B1=A1B1=1,∴=,∵A2B1=A1B1=1,∴A2C1=2=,∴=,同理得:A3C2=4=,…,=,∴=,故答案为.考点:1.一次函数图象上点的坐标特征;2.正方形的性质;3.规律型.17、3【解析】试题分析:将1代入操作程序,只需要3次后变为2,设这个最大正整数为m,则,从而求得这个最大的数.【解答】解:1[)=8[)=3[)=2,设这个最大正整数为m,则m[)=1,∴<1.∴m<2.∴m的最大正整数值为3.考点:估算无理数的大小18、3(a+1)2【分析】首先提取公因式,然后应用完全平方公式继续分解.【详解】3a2+6a+3=.故答案为.考点:分解因式.三、解答题(共66分)19、(1)证明见解析;(2)AD=1.【分析】(1)根据等边三角形的性质,通过全等三角形的判定定理SAS证得结论;(2)利用(1)的结果的结果求得∠FBQ=30°,所以由“30度角所对的直角边是斜边的一半”得到BF=2FQ=8,则易求BE=BF+EF=8+1=1.【详解】(1)证明:∵△ABC为等边三角形,

∴AB=CA,∠BAE=∠C=60°,

在△AEB与△CDA中,,

∴△AEB≌△CDA(SAS),

(2)由(1)可知≌,∴,AD=BE又,BF=2FQ=8,∴BE=BF+EF=8+1=1∴AD=1【点睛】本题考查了全等三角形的判定与性质、含30度角的直角三角形,在判定三角形全等时,关键是选择恰当的判定条件.20、(1)1;(2)【分析】(1)先将变形为3m3n,再代入求解;

(2)将变形为(3m)2÷3n,代入求解即可.【详解】解:(1)原式=3m3n,

=25

=1.

(2)原式=(3m)2÷3n,

=22÷5

=.【点睛】本题考查了同底数幂的除法、同底数幂的乘法,幂的乘方与积的乘方的知识,解答本题的关键在于熟练掌握各知识点的概念和运算法则.21、(1)证明见解析;(2).【分析】(1)由矩形的性质可得∠ACB=∠DAC,然后利用“ASA”证明△AOF和△COE全等,根据全等三角形对应边相等可得OE=OF,即可证四边形AECF是菱形;(2)由菱形的性质可得:菱形AECF的面积=EC×AB=AC×EF,进而得到EF的长.【详解】解:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠ACB=∠DAC,∵O是AC的中点,∴AO=CO,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴OE=OF,且AO=CO,∴四边形AECF是平行四边形,又∵EF⊥AC,∴四边形AECF是菱形;(2)∵菱形AECF的面积=EC×AB=AC×EF,又∵AB=6,AC=10,EC=,∴×6=×10×EF,解得EF=.【点睛】考核知识点:菱形性质.理解性质是关键.22、(1)10°;(1)1.【分析】(1)由题知∠ABE=∠BAE=40°,根据三角形的一个外角等于与它不相邻的两个内角和求得∠AEC=80°,因为是边上的高,即可求解.(1)是的角平分线,结合题(1)得出∠DAC=30°,即可求解.【详解】解:(1)∵∴∴∵是边上得高,∴∴(1)∵是的角平分线,∴∴∵∴【点睛】本题考查了三角形外角的性质以及角平分线的性质,掌握这两个知识点是解题的关键.23、【分析】今年该商品售价为每件,售出的数量是,然后根据题意列方程求解即可.【详解】解:由题意知今年该商品售价为每件,售出的数量是,则销售额是,如果售价每件涨价成,营业额将达到,则可列,化简得,∴(5m-4)2=0,∴5m=4,∴.【点睛】本题考查了方程的应用,完全平方公式,正确列出方程是解答本题的关键.24、,1【分析】先根据分式混合运算顺序和运算法则化简分式,再代入a、b计算即可.【详解】原式===,当、互为负倒数时,∴原式=1.【点睛】本题考查分式的化简求值、倒数定义,熟练掌握分式混合运算顺序和运

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论