版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届德宏市重点中学八年级数学第一学期期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.某鞋厂为了了解初中生穿鞋的尺码情况,对某中学八年级(2)班的20名男生进行了调查,统计结果如下表:则这20个数据的中位数和众数分别为()尺码373839404142人数344711A.4和7 B.40和7 C.39和40 D.39.1和392.在实数,,,,中,无理数有()A.1个 B.2个 C.3个 D.4个3.在,0,,,,,3.1415,0.010010001……(相邻两个1之逐渐增加个0)中,无理数有().A.1个 B.2个 C.3个 D.4个4.长度单位1纳米=10-9米,目前发现一种新型禽流感病毒(H7N9)的直径约为101纳米,用科学记数法表示该病毒直径是()A.10.l×l0-8米 B.1.01×l0-7米 C.1.01×l0-6米 D.0.101×l0-6米5.已知有意义,则的取值范围是()A. B. C. D.且6.若(x+a)(x2﹣x﹣b)的乘积中不含x的二次项和一次项,则常数a、b的值为()A.a=1,b=﹣1 B.a=﹣1,b=1 C.a=1,b=1 D.a=﹣1,b=﹣17.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的△ADH中(
)A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD8.如图,在菱形ABCD中,对角线AC、BD相较于点O,BD=8,BC=5,AE⊥BC于点E,则AE的长为()A.5 B. C. D.9.某班40名同学一周参加体育锻炼时间统计如表所示:人数(人)317137时间(小时)78910那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5 B.17,9 C.8,9 D.8,8.510.计算结果为x2﹣y2的是()A.(﹣x+y)(﹣x﹣y) B.(﹣x+y)(x+y)C.(x+y)(﹣x﹣y) D.(x﹣y)(﹣x﹣y)11.若ax=3,ay=2,则a2x+y等于()A.18 B.8 C.7 D.612.下列各选项中,所求的最简公分母错误的是()A.与的最简公分母是6x B.与最简公分母是3a2b3cC.与的最简公分母是 D.与的最简公分母是m2-n2二、填空题(每题4分,共24分)13.我们规定:等腰三角形的顶角与一个底角度数的比值叫作等腰三角形的“特征值”,记作k.若,则该等腰三角形的顶角为______________度.14.已知函数y=-x+m与y=mx-4的图象交点在y轴的负半轴上,那么,m的值为____.15.“厉害了,华为!”2019年1月7日,华为宣布推出业界最高性能ARM-based处理器鲲鹏1.据了解,该处理器釆用7纳米工艺制造,已知1纳米=0.000000001,则7纳米用科学计数法表示为___________.16.不等式组的解集为,则不等式的解集为__________17.已知等腰三角形的一个内角是80°,则它的底角是°.18.若a+b=4,ab=1,则a2b+ab2=________.三、解答题(共78分)19.(8分)如图,点、都在线段上,且,,,与相交于点.(1)求证:;(2)若,,求的长.20.(8分)当在边长为1的正方形网格中建立如图所示的平面直角坐标系,点、点的坐标分别为,(1)画出时关于轴对称图形;(2)在平面直角坐标系内找一点求(不与点重合),使与全等,求请直接写出所有可能的点的坐标.21.(8分)小明在学了尺规作图后,通过“三弧法”作了一个,其作法步骤是:①作线段,分别以为圆心,取长为半径画弧,两弧的交点为C;②以B为圆心,长为半径画弧交的延长线于点D;③连结.画完后小明说他画的的是直角三角形,你认同他的说法吗,请说明理由.22.(10分)已知,如图,折叠长方形(四个角都是直角,对边相等)的一边使点落在边的点处,已知,,求的长.23.(10分)[建立模型](1)如图1.等腰中,,,直线经过点,过点作于点,过点作于点,求证:;[模型应用](2)如图2.已知直线与轴交于点,与轴交于点,将直线绕点逆时针旋转45'°至直线,求直线的函数表达式:(3)如图3,平面直角坐标系内有一点,过点作轴于点,BC⊥y轴于点,点是线段上的动点,点是直线上的动点且在第四象限内.试探究能否成为等腰直角三角形?若能,求出点的坐标,若不能,请说明理由.24.(10分)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.25.(12分)若在一个两位正整数N的个位数与十位数字之间添上数字5,组成一个新的三位数,我们称这个三位数为N的“至善数”,如34的“至善数”为354;若将一个两位正整数M加5后得到一个新数,我们称这个新数为M的“明德数”,如34的“明德数”为1.(1)26的“至善数”是,“明德数”是.(2)求证:对任意一个两位正整数A,其“至善数”与“明德数”之差能被45整除;26.已知点在轴正半轴上,以为边作等边,,其中是方程的解.(1)求点的坐标.(2)如图1,点在轴正半轴上,以为边在第一象限内作等边,连并延长交轴于点,求的度数.(3)如图2,若点为轴正半轴上一动点,点在点的右边,连,以为边在第一象限内作等边,连并延长交轴于点,当点运动时,的值是否发生变化?若不变,求其值;若变化,求出其变化的范围.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据众数与中位数的定义求解分析.40出现的次数最多为众数,第10、11个数的平均数为中位数.【详解】解:观察图表可知:有7人的鞋号为40,人数最多,即众数是40;中位数是第10、11人的平均数,即39;故选:C.【点睛】本题考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是数据中出现最多的一个数.2、B【详解】解:在实数,,,,中,其中,,是无理数.故选:B.3、C【分析】无限不循环小数是无理数,根据定义解答.【详解】∵=1,=3,∴无理数有:,,0.010010001……(相邻两个1之逐渐增加个0),共3个,故选:C.【点睛】此题考查无理数,熟记定义并掌握无理数与有理数的区别是解题的关键.4、B【解析】试题分析:科学记数法的表示形式为,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.所以101纳米=1.01×l0-7米,故选B考点:科学记数法的表示方法点评:本题是属于基础应用题,只需学生熟练掌握科学记数法的表示方法,即可完成.5、D【分析】根据分式成立的条件和零指数幂成立的条件列不等式求解【详解】解:由题意可知:且解得:且故选:D.【点睛】本题考查分式和零指数幂成立的条件,掌握分母不能为零,零指数幂的底数不能为零是解题关键.6、A【分析】根据多项式乘以多项式法则展开,即可得出﹣1+a=1,﹣b﹣a=1,求出即可.【详解】解:(x+a)(x2﹣x﹣b)=x3﹣x2﹣bx+ax2﹣ax﹣ab=x3+(﹣1+a)x2+(﹣b﹣a)x﹣ab,∵(x+a)(x2﹣x﹣b)的乘积中不含x的二次项和一次项,∴﹣1+a=1,﹣b﹣a=1,∴a=1,b=﹣1,故选:A.【点睛】本题考查了多项式乘以多项式法则的应用,关键根据(x+a)(x2﹣x﹣b)的乘积中不含x的二次项和一次项,得出方程-1+a=1,-b-a=1.7、B【解析】翻折后的图形与翻折前的图形是全等图形,利用折叠的性质,正方形的性质,以及图形的对称性特点解题.【详解】解:由图形的对称性可知:AB=AH,CD=DH,∵正方形ABCD,∴AB=CD=AD,∴AH=DH=AD.
故选B.【点睛】本题主要考查翻折图形的性质,解决本题的关键是利用图形的对称性把所求的线段进行转移.8、C【解析】在中,根据求出OC,再利用面积法可得,由此求出AE即可.【详解】四边形ABCD是菱形,,,,在中,,,故,解得:.故选C.【点睛】此题主要考查了菱形的性质以及勾股定理,正确利用三角形面积求出AE的长是解题关键.9、D【解析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为;故选:D.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.10、A【分析】根据平方差公式和完全平方公式逐一展开即可【详解】A.(﹣x+y)(﹣x﹣y)=(-x)2-y2=x2﹣y2,故A选项符合题意;B.(﹣x+y)(x+y),故B选项不符合题意;C.(x+y)(﹣x﹣y),故C选项不符合题意;D.(x﹣y)(﹣x﹣y)=,故D选项不符合题意;故选A.【点睛】此题考查的是平方差公式以及完全平方公式,掌握平方差公式以及完全平方公式的特征是解决此题的关键.11、A【分析】直接利用幂的乘方运算法则结合同底数幂的乘法运算法则求出答案.【详解】解:∵ax=3,ay=2,
∴a2x+y=(ax)2×ay=32×2=1.
故选:A.【点睛】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.12、C【解析】A.与的最简公分母是6x,故正确;B.与最简公分母是3a2b3c,故正确;C.与的最简公分母是,故不正确;D.与的最简公分母是m2-n2,故正确;故选C.二、填空题(每题4分,共24分)13、【分析】根据等腰三角形的性质得出∠B=∠C,根据“特征值”的定义得到∠A=2∠B,根据三角形内角和定理和已知得出4∠B=180°,求解即可得出结论.【详解】∵△ABC中,AB=AC,∴∠B=∠C.∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=2,∴∠A:∠B=2,即∠A=2∠B.∵∠A+∠B+∠C=180°,∴4∠B=180°,∴∠B=45°,∴∠A=2∠B=1°.故答案为1.【点睛】本题考查了三角形内角和定理和等腰三角形的性质,能根据等腰三角形性质、三角形内角和定理和已知得出4∠B=180°是解答此题的关键.14、-1【分析】根据题意,第二个函数图象与y轴的交点坐标也是第一个函数图象与y轴的交点坐标,然后求出第二个函数图象与y轴的交点坐标,代入第一个函数解析式计算即可求解.【详解】当x=0时,y=m•0-1=-1,
∴两函数图象与y轴的交点坐标为(0,-1),
把点(0,-1)代入第一个函数解析式得,m=-1.
故答案为:-1.【点睛】此题考查两直线相交的问题,根据第二个函数解析式求出交点坐标是解题的关键,也是本题的突破口.15、【分析】根据科学计数法直接写出即可.【详解】0.000000001×7=,故答案为.【点睛】本题是对科学计数法的考查,熟练掌握科学计数法的知识是解决本题的关键.16、【分析】根据题意先求出a和b的值,并代入不等式进而解出不等式即可.【详解】解:,解得,∵不等式组的解集为,∴,解得,将代入不等式即有,解得.故答案为:.【点睛】本题考查解一元一次不等式组以及解一元一次不等式,熟练掌握相关求解方法是解题的关键.17、80°或50°【解析】分两种情况:①当80°的角为等腰三角形的顶角时,底角的度数=(180°−80°)÷2=50°;②当80°的角为等腰三角形的底角时,其底角为80°,故它的底角度数是50或80.故答案为:80°或50°.18、1【解析】分析式子的特点,分解成含已知式的形式,再整体代入.【详解】解:a2b+ab2=ab(a+b)=1×1=1.故答案为:1.【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.三、解答题(共78分)19、(1)见解析;(2)7【分析】(1)根据“SSS”证明△ACE≌△BDF即可;(2)根据全等三角形对应角相等得到∠ACE=∠BDF,根据等角对等边得到DG=CG,然后根据线段的和差即可得出结论.【详解】∵,∴,∴.在与中,∵,∴;(2)由(1)得:,∴,∴,∴.【点睛】本题考查了全等三角形的判定与性质以及等腰三角形的判定.证明△ACE≌△BDF是解答本题的关键.20、(1)见解析;(2)D(-3,1)或(3,4)或(-1,-3).【分析】(1)作A关于x轴对称的对称点A’,△OA’B即为所求.(2)根据全等三角形的判定定理即可得到结论.【详解】(1)如下图所示(2)如图所示,△OAD即为所求,D(-3,1)或(3,4)或(-1,-3).【点睛】本题考查了网格作图的问题,掌握轴对称图形的性质和全等三角形的性质是解题的关键.21、同意,理由见解析【分析】利用等边对等角可得,再根据三角形内角和定理即可证明.【详解】同意,理由如下:解:∵AC=BC=BD,
∴,∵,∴,∴,∴∠ACD=90°,即△ACD是直角三角形.【点睛】本题考查等边对等角,三角形内角和定理.能利用等边对等角把相等的边转化为相等的角是解题关键.22、【分析】设,在△CEF中用勾股定理求得EC的长度.【详解】∴由勾股定理得,.设,则.∴由勾股定理得∴解得∴EC的长为1.【点睛】本题考查了勾股定理的应用,用代数式表示△CEF中各边的等量关系式,求出EC的长.23、(1)见解析;(2)直线l2的函数表达式为:y=−5x−10;(3)点D的坐标为(,)或(4,−7)或(,).【解析】(1)由垂直的定义得∠ADC=∠CEB=90°,由同角的余角的相等得∠DAC=∠ECB,然后利用角角边证明△BEC≌△CDA即可;(2)过点B作BC⊥AB交AC于点C,CD⊥y轴交y轴于点D,由(1)可得△ABO≌△BCD(AAS),求出点C的坐标为(−3,5),然后利用待定系数法求直线l2的解析式即可;(3)分情况讨论:①若点P为直角时,②若点C为直角时,③若点D为直角时,分别建立(1)中全等三角形模型,表示出点D坐标,然后根据点D在直线y=−2x+1上进行求解.【详解】解:(1)∵AD⊥ED,BE⊥ED,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠ACD+∠ECB=∠ACD+∠DAC=90°,∴∠DAC=∠ECB,在△CDA和△BEC中,,∴△BEC≌△CDA(AAS);(2)过点B作BC⊥AB交AC于点C,CD⊥y轴交y轴于点D,如图2所示:∵CD⊥y轴,∴∠CDB=∠BOA=90°,又∵BC⊥AB,∴∠ABC=90°,又∵∠BAC=45°,∴AB=CB,由[建立模型]可知:△ABO≌△BCD(AAS),∴AO=BD,BO=CD,又∵直线l1:与x轴交于点A,与y轴交于点B,∴点A、B的坐标分别为(−2,0),(0,3),∴AO=2,BO=3,∴BD=2,CD=3,∴点C的坐标为(−3,5),设l2的函数表达式为y=kx+b(k≠0),代入A、C两点坐标得:解得:,∴直线l2的函数表达式为:y=−5x−10;(3)能成为等腰直角三角形,①若点P为直角时,如图3-1所示,过点P作PM⊥OC于M,过点D作DH垂直于MP的延长线于H,设点P的坐标为(3,m),则PB的长为4+m,∵∠CPD=90°,CP=PD,∠PMC=∠DHP=90°,∴由[建立模型]可得:△MCP≌△HPD(AAS),∴CM=PH,PM=DH,∴PH=CM=PB=4+m,PM=DH=3,∴点D的坐标为(7+m,−3+m),又∵点D在直线y=−2x+1上,∴−2(7+m)+1=−3+m,解得:m=,∴点D的坐标为(,);②若点C为直角时,如图3-2所示,过点D作DH⊥OC交OC于H,PM⊥OC于M,设点P的坐标为(3,n),则PB的长为4+n,∵∠PCD=90°,CP=CD,∠PMC=∠DHC=90°,由[建立模型]可得:△PCM≌△CDH(AAS),∴PM=CH,MC=HD,∴PM=CH=3,HD=MC=PB=4+n,∴点D的坐标为(4+n,−7),又∵点D在直线y=−2x+1上,∴−2(4+n)+1=−7,解得:n=0,∴点P与点A重合,点M与点O重合,点D的坐标为(4,−7);③若点D为直角时,如图3-3所示,过点D作DM⊥OC于M,延长PB交MD延长线于Q,则∠Q=90°,设点P的坐标为(3,k),则PB的长为4+k,∵∠PDC=90°,PD=CD,∠PQD=∠DMC=90°,由[建立模型]可得:△CDM≌△DPQ(AAS),∴MD=PQ,MC=DQ,∴MC=DQ=BQ,∴3-DQ=4+k+DQ,∴DQ=,∴点D的坐标为(,),又∵点D在直线y=−2x+1上,∴,解得:k=,∴点D的坐标为(,);综合所述,点D的坐标为(,)或(4,−7)或(,).【点睛】本题综合考查了全等三角形的判定与性质,一次函数图象上点的坐标特征,待定系数法求函数解析式等知识点,重点掌握在平面直角坐标系内一次函数的求法,难点是构造符合题意的全等三角形.24、问题1:A、B两型自行车的单价分别是70元和80元;问题2:a的值为1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 直流变交流课程设计
- 2024年新能源汽车租赁与环保达标认证服务合同3篇
- 汽车电子防盗系统检修考核试卷
- 朗肯循环课程设计
- 2024年私人借款协议详细条款版B版
- 2024年度长途租车服务及加油优惠合同3篇
- 液压传动课程设计怎么做
- 2024年渣土填埋场运营管理合同范本协议书3篇
- 2024年新型降解塑料袋研发与应用合同模板3篇
- 火箭结构优化与减重设计考核试卷
- 表5.13.10钢构件(屋架、桁架)组装工程检验批质量验收记录录
- 中国文化概要
- 新华制药内部控制管理手册
- 医学院临安校区学生宿舍家具改造招标文件
- 挥鞭样损伤描述课件
- 钴酸锂结构特性
- 台州造船行业产值分析
- 2024年度医院儿童保健科医务人员述职报告课件
- 劳动防护用品的使用和维护安全培训
- 23秋国家开放大学《汉语基础》期末大作业(课程论文)参考答案
- 信息技术与初中语文学科教学深度融合的研究
评论
0/150
提交评论