吉林省白城市名校2025届八年级数学第一学期期末教学质量检测模拟试题含解析_第1页
吉林省白城市名校2025届八年级数学第一学期期末教学质量检测模拟试题含解析_第2页
吉林省白城市名校2025届八年级数学第一学期期末教学质量检测模拟试题含解析_第3页
吉林省白城市名校2025届八年级数学第一学期期末教学质量检测模拟试题含解析_第4页
吉林省白城市名校2025届八年级数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省白城市名校2025届八年级数学第一学期期末教学质量检测模拟试题学质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.立方根等于本身的数是()A.-1 B.0 C.±1 D.±1或02.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是()A.两条直角边成正比例 B.两条直角边成反比例C.一条直角边与斜边成正比例 D.一条直角边与斜边成反比例3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108° B.90° C.72° D.60°4.下列四个图案中,是轴对称图形的是()A. B. C. D.5.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是()A.52 B.68 C.72 D.766.如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的,分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是()A.甲的速度为20km/hB.甲和乙同时出发C.甲出发1.4h时与乙相遇D.乙出发3.5h时到达A地7.某校八(2)班6名女同学的体重(单位:kg)分别为35,36,38,40,42,42,则这组数据的中位数是()A.38 B.39 C.40 D.428.通过“第十四章整式的乘法与因式分解”的学习,我们知道:可以利用图形中面积的等量关系得到某些数学公式,如图,可以利用此图得到的数学公式是()A. B.C. D.9.如图,以两条直线,的交点坐标为解的方程组是()A. B.C. D.10.给出下列长度的四组线段:①1,,;②3,4,5;③6,7,8;④a2-1,a2+1,2a(a为大于1的正整数).其中能组成直角三角形的有()A.①②③ B.①②④ C.①② D.②③④11.满足下列条件的中,不是直角三角形的是()A. B.,,C.,, D.,,12.下列关于分式方程增根的说法正确的是()A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根二、填空题(每题4分,共24分)13.某招聘考试成绩由笔试和面试组成,笔试占成绩的60%,面试占成绩的40%.小明笔试成绩为95分,面试成绩为85分,那么小明的最终成绩是_____.14.计算:|-2|=______.15.分解因式____________.16.当a=3,a-b=-1时,a2-ab的值是17.如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=_____.18.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC=________.三、解答题(共78分)19.(8分)已知一次函数的表达式是y=(m-4)x+12-4m(m为常数,且m≠4)(1)当图像与x轴交于点(2,0)时,求m的值;(2)当图像与y轴的交点位于原点下方时,判断函数值y随着x的增大而变化的趋势;(3)在(2)的条件下,当函数值y随着自变量x的增大而减小时,求其中任意两条直线与y轴围成的三角形面积的取值范围.20.(8分)甲、乙两工程队合作完成一项工程,需要12天完成,工程费用共36000元,若甲、乙两工程队单独完成此项工程,乙工程队所用的时间是甲工程队的1.5倍,乙工程队每天的费用比甲工程队少800元.(1)问甲、乙两工程队单独完成此项工程各需多少天?(2)若让一个工程队单独完成这项工程,哪个工程队的费用较少?21.(8分)在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB=OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.22.(10分)如图,在平行四边形ABCD中,点E为AD的中点,延长CE交BA的延长线于点F.(1)求证:AB=AF;(2)若BC=2AB,∠BCD=100°,求∠ABE的度数.23.(10分)观察下列等式第1个等式第2个等式第3个等式第4个等式……(1)按以上规律列出第5个等式;(2)用含的代数式表示第个等式(为正整数).(3)求的值.24.(10分)已知一次函数y=﹣x+4与x轴交于点A,与y轴交于点C,∠CAO=30°,B点在第一象限,四边形OABC为长方形,将B点沿直线AC对折,得到点D,连接点CD交x轴于点E.(1)M是直线AC上一个动点,N是y轴上一个动点,求出周长的最小值;(2)点P为y轴上一动点,作直线AP交直线CD于点Q,将直线AP绕着点A旋转,在旋转过程中,与直线CD交于Q.请问,在旋转过程中,是否存在点P使得为等腰三角形?如果存在,请求出∠OAP的度数;如果不存在,请说明理由.25.(12分)阅读理解:“若x满足(21﹣x)(x﹣200)=﹣204,试求(21﹣x)2+(x﹣200)2的值”.解:设21﹣x=a,x﹣200=b,则ab=﹣204,且a+b=21﹣x+x﹣200=1.因为(a+b)2=a2+2ab+b2,所以a2+b2=(a+b)2﹣2ab=12﹣2×(﹣204)=2,即(21﹣x)2+(x﹣200)2的值为2.同学们,根据材料,请你完成下面这一题的解答过程:“若x满足(2019﹣x)2+(2017﹣x)2=4044,试求(2019﹣x)(2017﹣x)的值”.26.如图所示,△ABD和△BCD都是等边三角形,E、F分别是边AD、CD上的点,且DE=CF,连接BE、EF、FB.求证:(1)△ABE≌△DBF;(2)△BEF是等边三角形.

参考答案一、选择题(每题4分,共48分)1、D【分析】根据立方根的定义得到立方根等于本身的数.【详解】解:∵立方根是它本身有3个,分别是±1,1.故选:D.【点睛】本题主要考查了立方根的性质.对于特殊的数字要记住,立方根是它本身有3个,分别是±1,1.立方根的性质:(1)正数的立方根是正数.(2)负数的立方根是负数.(3)1的立方根是1.2、B【详解】解:设该直角三角形的两直角边是a、b,面积为S.则S=ab.∵S为定值,∴ab=2S是定值,则a与b成反比例关系,即两条直角边成反比例.故选B.3、C【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.4、D【解析】根据轴对称图形的定义,即可得到答案.【详解】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.【点睛】本题考查了轴对称图形的定义,解题的关键是熟记定义.5、D【分析】先根据勾股定理求出BD的长度,然后利用外围周长=即可求解.【详解】由题意可知∵∴∴风车的外围周长是故选:D.【点睛】本题主要考查勾股定理,掌握勾股定理是解题的关键.6、C【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h时到达A地.【详解】解:A.甲的速度为:60÷2=30,故A错误;B.根据图象即可得出甲比乙早出发0.5小时,故B错误;C.设对应的函数解析式为,所以:,解得即对应的函数解析式为;设对应的函数解析式为,所以:,解得即对应的函数解析式为,所以:,解得∴点A的实际意义是在甲出发1.4小时时,甲乙两车相遇,故本选项符合题意;D.根据图形即可得出乙出发3h时到达A地,故D错误.故选:C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.7、B【解析】根据中位数的定义求解,把数据按大小排列,第3、4个数的平均数为中位数.【详解】解:由于共有6个数据,

所以中位数为第3、4个数的平均数,即中位数为=39,

故选:B.【点睛】本题主要考查了中位数.要明确定义:将一组数据从小到大(或从大到小)重新排列后,若这组数据的个数是奇数,则最中间的那个数叫做这组数据的中位数;若这组数据的个数是偶数,则最中间两个数的平均数是这组数据的中位数.8、B【分析】根据图形,左上角正方形的面积等于大正方形的面积减去两个矩形的面积,然后加上多减去的右下角的小正方形的面积.【详解】∵左上角正方形的面积,

左上角正方形的面积,还可以表示为,

∴利用此图得到的数学公式是.故选:B【点睛】本题考查的是根据面积推导乘法公式,灵活运用整体面积等于部分面积之和是解题的关键.9、C【分析】两条直线的交点坐标应该是联立两个一次函数解析式所组方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【详解】直线l1经过(2,3)、(0,−1),设直线l1为y=kx+b(k≠0)代入得,解得∴l1函数解析式为y=2x−1;直线l2经过(2,3)、(0,1),设直线l2为y=px+q(p≠0)代入得,解得∴l2函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:.故选:C.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.10、B【分析】根据勾股定理的逆定理逐一判断即可.【详解】解:①因为12+2=2,所以长度为1,,的线段能组成直角三角形,故①符合题意;②因为32+42=52,所以长度为3,4,5的线段能组成直角三角形,故②符合题意;③因为62+72≠82,所以长度为6,7,8的线段不能组成直角三角形,故③不符合题意;④因为(a2-1)2+(2a)2=a4-2a2+1+4a2=a4+2a2+1=(a2+1)2,所以长度为a2-1,a2+1,2a(a为大于1的正整数)的线段能组成直角三角形,故④符合题意.综上:符合题意的有①②④故选B.【点睛】此题考查的是直角三角形的判定,掌握利用勾股定理的逆定理判定直角三角形是解决此题的关键.11、D【分析】根据勾股定理的逆定理以及角的度数对各选项进行逐一判断即可.【详解】A、∠A:∠B:∠C=1:2:3,可得:∠C=90,是直角三角形,错误;B、,,可得(AC)2+(BC)2=(AB)2,∴能构成直角三角形,错误;C、,,,可得(AC)2+(BC)2=(AB)2,∴能构成直角三角形,错误;D、,,,可得3+4≠5,不是直角三角形,正确;故选:D.【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.12、D【解析】试题分析:分式方程的增根是最简公分母为零时,未知数的值.解:分式方程的增根是使最简公分母的值为零的解.故选D.考点:分式方程的增根.二、填空题(每题4分,共24分)13、1【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【详解】根据题意得:小明的最终成绩是95×60%+85×40%=1(分).故答案为1.【点睛】本题考查的是加权平均数的求法.本题易出现的错误是求95和85两个数的平均数,对平均数的理解不正确.14、0【分析】先化简绝对值,以及求立方根,然后相减即可.【详解】解:;故答案为0.【点睛】本题考查了立方根和绝对值的定义,解题的关键是正确进行化简.15、【分析】先提取公因式,再利用平方差公式即可求解.【详解】故答案为:.【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法.16、-1【解析】试题分析:直接提取公因式,然后将已知代入求出即可.即a2-ab=a(a-b)=1×(-1)=-1.考点:因式分解-提公因式法.点评:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.17、240°.【分析】三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【详解】解:根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°﹣60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°﹣120°=240°.故答案为:240°.【点睛】本题考查多边形角度的计算,关键在于结合图形运用角度转换.18、60°【分析】本题需先证出△BOC≌△AOD,求出∠C,再求出∠DAC,最后根据三角形的内角和定理即可求出答案.【详解】在△BOC和△AOD中,∵OA=OB,∠O=∠O,OC=OD,∴△BOC≌△AOD,∴∠C=∠D=35°.∵∠DAC=∠O+∠D=50°+35°=85°,∴∠AEC=180°﹣∠DAC﹣∠C=180°﹣85°﹣35°=60°.故答案为60°.【点睛】本题主要考查了全等三角形的判定和性质,在解题时要注意和三角形的内角和定理相结合是本题的关键.三、解答题(共78分)19、(1);(2)当时,函数值y随着自变量x的增大而减小;当时,函数值y随着自变量x的增大而增大;(3)【分析】(1)把(2,0)代入解析式即可求解;(2)先求出直线与y轴交点为(0,12-4m),故可得到不等式,再根据一次函数的性质即可额求解;(3)先判断函数图像恒过点(4,-4),再根据函数图像求得两条直线形成的面积最大为,故可求解.【详解】(1)∵一次函数经过点(2,0)∴解得(2)∵图像与y轴交点位于原点下方,且与y轴交点为(0,12-4m)∴,解得∴∴当,即时,函数值y随着自变量x的增大而减小;当,即时,函数值y随着自变量x的增大而增大.(3)∵函数值y随着自变量x的增大而减小,∴∵∴函数图像恒过点(4,-4)由函数图像可知,当时,,当时,,此时两条直线形成的面积最大为;当两条直线相同时,形成的面积为,故任意两条直线与y轴形成的三角形面积的取值范围为.【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知一次函数的性质及三角形的面积公式.20、(1)甲单独完成需要20天,则乙单独完成需要30天;(2)选择乙比较划算【解析】(1)设甲单独完成需要天,则乙单独完成需要天,根据甲、乙两工程队合作完成一项工程,需要12天完成列方程求解即可.(2)设甲每天费用为元,则乙每天费用为元,根据甲、乙两工程队合作完成一项工程,工程费用共36000元列方程求解,然后计算出费用比较即可.【详解】解:(1)设甲单独完成需要天,则乙单独完成需要天,由题意得,解得天,经检验符合题意,所以乙:30天;(2)设甲每天费用为元,则乙每天费用为元;,解得;所以甲:1900元/天,乙:1100元/天;所以甲单独完成此项工程所需费用为:1900×20=38000元;乙单独完成此项工程所需费用为:1100×30=33000元;所以选择乙比较划算;【点睛】本题考查分式方程在工程问题中的应用以及一元一次方程的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.工程问题的基本关系式:工作总量=工作效率×工作时间.21、(1)y=x+6;(2)D(﹣,3),S△BCD=4;(3)存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0)【分析】(1)根据待定系数法可得直线l1的解析式;(2)如图1,过C作CH⊥x轴于H,求点E的坐标,利用C和E两点的坐标求直线l2的解析式,与直线l1列方程组可得点D的坐标,利用面积和可得△BCD的面积;(3)分四种情况:在x轴和y轴上,证明△DMQ≌△QNC(AAS),得DM=QN,QM=CN,设D(m,m+6)(m<0),表示点Q的坐标,根据OQ的长列方程可得m的值,从而得到结论.【详解】解:(1)y=k1x+6,当x=0时,y=6,∴OB=6,∵OB=OA,∴OA=2,∴A(﹣2,0),把A(﹣2,0)代入:y=k1x+6中得:﹣2k1+6=0,k1=,∴直线l1的解析式为:y=x+6;(2)如图1,过C作CH⊥x轴于H,∵C(,1),∴OH=,CH=1,Rt△ABO中,,∴AB=2OA,∴∠OBA=30°,∠OAB=60°,∵CD⊥AB,∴∠ADE=90°,∴∠AED=30°,∴EH=,∴OE=OH+EH=2,∴E(2,0),把E(2,0)和C(,1)代入y=k2x+b中得:,解得:,∴直线l2:y=x+2,∴F(0,2)即BF=6﹣2=4,则,解得,∴D(﹣,3),∴S△BCD=BF(xC﹣xD)=;(3)分四种情况:①当Q在y轴的正半轴上时,如图2,过D作DM⊥y轴于M,过C作CN⊥y轴于N,∵△QCD是以CD为底边的等腰直角三角形,∴∠CQD=90°,CQ=DQ,∴∠DMQ=∠CNQ=90°,∴∠MDQ=∠CQN,∴△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,﹣m+1),∴OQ=QN+ON=OM+QM,即﹣m+1=m+6+,,∴Q(0,2);②当Q在x轴的负半轴上时,如图3,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m+1,0),∴OQ=QN﹣ON=OM﹣QM,即m+6-=﹣m﹣1,m=5﹣4,∴Q(6﹣4,0);③当Q在x轴的负半轴上时,如图4,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m﹣1,0),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6﹣=﹣m+1,m=﹣4﹣5,∴Q(﹣4﹣6,0);④当Q在y轴的负半轴上时,如图5,过D作DM⊥y轴于M,过C作CN⊥y轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,m+1),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6+=﹣m﹣1,m=﹣2﹣1,∴Q(0,﹣2);综上,存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0).【点睛】本题是综合了一次函数的图象与性质,全等三角形的性质与判定,直角三角形与等腰直角三角形的性质等知识的分情况讨论动点动图问题,在熟练掌握知识的基础上,需要根据情况作出辅助线,或者作出符合题意的图象后分情况讨论.22、(1)证明见解析;(2)∠ABE=40°.【分析】(1)由四边形ABCD是平行四边形,点E为AD的中点,易证得△DEC≌△AEF(AAS),继而可证得DC=AF,又由DC=AB,证得结论;(2)由(1)可知BF=2AB,EF=EC,然后由∠BCD=100°求得BE平分∠CBF,继而求得答案.【详解】证明:(1)∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴∠DCE=∠F,∠FBC+∠BCD=180°,∵E为AD的中点,∴DE=AE.在△DEC和△AEF中,,∴△DEC≌△AEF(AAS).∴DC=AF.∴AB=AF;(2)由(1)可知BF=2AB,EF=EC,∵∠BCD=100°,∴∠FBC=180°﹣100°=80°,∵BC=2AB,∴BF=BC,∴BE平分∠CBF,∴∠ABE=∠FBC=×80°=40°【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的性质,证得△DEC≌△AEF和△BCF是等腰三角形是关键.23、(1);(2);(3)【分析】(1)、(2)根据题干中的规律,继续往下写即可;(3)先提取公因式,然后发现用裂项相消发可以抵消掉中间项,从而算得结果.【详解】(1)根据题干规律,则第5项为:(2)发现一般规律,第n项是的形式,写成算式的形式为:(3)=+++=[+++]==【点睛】本题考查找规律,需要注意,当我们找到一般规律后,建议多代入几项进行验证,防止出错.24、(1)1;(2)存在,15°或60°【分析】(1)首先确定A,C的坐标,由矩形的性质和折叠的性质可得AD=AB=4,∠CAD=60°,可得∠DAO=30°,由直角三角形的性质求出点D的坐标,过点E作y轴的对称点G,过点E作AC的对称点H,连接GH交y轴于点N,与AC交于M,即△EMN的周长最小值为GH,由直角三角形的性质可求AE,OE的长,可求点G,点H坐标,即可求解.(2)分两种情况讨论,由等腰三角形的性质可求解.【详解】解:(1)∵一次函数与x轴交于点A,与y轴交于点C,∴C(0,4),A(4,0),∴OC=AB=4,BC=OA=4,∵四边形AOCB是矩形,∠OAC=30°∴AC=2CO=1,∠CAB=60°,∵B点沿直线AC对折,使得点B落在点D处,∴AD=AB=4,∠CAD=60°,∴∠D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论