2025届德州陵城区五校联考数学八上期末综合测试模拟试题含解析_第1页
2025届德州陵城区五校联考数学八上期末综合测试模拟试题含解析_第2页
2025届德州陵城区五校联考数学八上期末综合测试模拟试题含解析_第3页
2025届德州陵城区五校联考数学八上期末综合测试模拟试题含解析_第4页
2025届德州陵城区五校联考数学八上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届德州陵城区五校联考数学八上期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180° C.∠1=∠4 D.∠3=∠42.下列各命题的逆命题中,①三个角对应相等的两个三角形是全等三角形;②全等三角形对应边上的高相等;③全等三角形的周长相等;④两边及其中一边的对角对应相等的两个三角形是全等三角形;假命题是()A.①② B.①③ C.②③ D.①④3.如图,已知,垂足为,,,则可得到,理由是()A. B. C. D.4.如图,在中,,,则的度数为()A. B. C. D.5.在下列长度的各组线段中,能组成三角形的是()A.1,2,4 B.1,4,9 C.3,4,5 D.4,5,96.已知P1(-3,y1),P2(2,y2)是一次函数y=2x+1的图象上的两个点,则y1,y2的大小关系是()A.y1>y2 B.y1<y2 C.y1=y2 D.不能确定7.若把分式中的x和y都扩大10倍,那么分式的值()A.扩大10倍 B.不变 C.缩小10倍 D.缩小20倍8.如图,△ABC≌△ADE,点D落在BC上,且∠EDC=70°,则∠B的度数等于()A.50° B.55° C.60° D.65°9.顺次连接矩形各边中点得到的四边形是()A.平行四边形 B.矩形 C.菱形 D.正方形10.直角三角形两条直角边的长分别为3和4,则斜边长为()A.4 B.5 C.6 D.1011.下列命题是真命题的是()A.同位角相等 B.两直线平行,同旁内角相等C.同旁内角互补 D.平行于同一直线的两条直线平行12.在矩形(长方形)ABCD中,AB=3,BC=4,若在矩形所在的平面内找一点P,使△PAB,△PBC,△PCD,△PAD都为等腰三角形,则满足此条件的点P共有()个.A.3个 B.4个 C.5个 D.6个二、填空题(每题4分,共24分)13.如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=_____.14.如图,△ABC申,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=82,则∠BDC=____.15.要使分式有意义,则x的取值范围为_____.16.如图,一系列“阴影梯形”是由轴、直线和过轴上的奇数,,,,,,所对应的点且与轴平行的直线围城的.从下向上,将面积依次记为,,,,(为正整数),则____,____.17.已知点与点关于轴对称,则_______.18.代数式的最大值为______,此时x=______.三、解答题(共78分)19.(8分)已知:如图,点E在直线DF上,点B在直线AC上,.求证:20.(8分)已知△ABC是等边三角形,点D、E分别在AC、BC上,且CD=BE

(1)求证:△ABE≌△BCD;(2)求出∠AFB的度数.21.(8分)计算:(1)(x+2)(2x﹣1)(2)()222.(10分)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(2,3)均在正方形网格的格点上.(1)画出△ABC关于x轴对称的图形△A1B1C1并写出顶点A1,B1,C1的坐标;(2)求△A1B1C1的面积.23.(10分)在等腰Rt△ABC中,∠C=90°,AC=BC,点M,N分别是边AB,BC上的动点,△BMN与△B′MN关于直线MN对称,点B的对称点为B′.(1)如图1,当B′在边AC上时,若∠CNB′=25°,求∠AMB′的度数;(2)如图2,当∠BMB′=30°且CN=MN时,若CM•BC=2,求△AMC的面积;(3)如图3,当M是AB边上的中点,B′N交AC于点D,若B′N∥AB,求证:B′D=CN.24.(10分)先化简,再求值:,其中m=25.(12分)如图,一条直线分别与直线、直线、直线、直线相交于点,且,.求证:.26.一列快车从甲地始往乙地,一列慢车从乙地始往甲地,慢车的速度是快车速度的,两车同时出发.设慢车行驶的时间为,两车之间的距离为,图中的折线表示与之间的函数关系.根据图象解决以下问题:(1)甲、乙两地之间的距离为_______;点的坐标为__________;(2)求线段的函数关系式,并写出自变量的取值范围;(3)若第二列快车从乙地出发驶往甲地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车追上慢车.求第二列快车比第一列快车晚出发多少小时?

参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:A.∵∠1=∠3,∴a∥b,故A正确;B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B正确;C.∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C正确;D.∠3和∠4是对顶角,不能判断a与b是否平行,故D错误.故选D.考点:平行线的判定.2、D【分析】写出各个命题的逆命题,根据全等三角形的判定定理和性质定理判断.【详解】解:①三个角对应相等的两个三角形是全等三角形的逆命题是全等三角形的三个角对应相等,是真命题;②全等三角形对应边上的高相等的逆命题是三边上的高相等的两个三角形全等,是真命题;③全等三角形的周长相等的逆命题是周长相等的两个三角形全等,是假命题;④两边及其中一边的对角对应相等的两个三角形是全等三角形的逆命题是全等三角形两边及其中一边的对角对应相等,是真命题;故选:D.【点睛】此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3、A【分析】根据全等三角形的判定定理分析即可.【详解】解:∵∴∠AOB=∠COD=90°在Rt△AOB和Rt△COD中∴(HL)故选A.【点睛】此题考查的是全等三角形的判定定理,掌握用HL判定两个三角形全等是解决此题的关键.4、B【分析】根据等腰三角形两底角相等求出∠B=∠ADB,根据等边对等角可得∠C=∠CAD,然后利用三角形内角和定理列式进行计算即可解答.【详解】∵AB=AD,∠BAD=40°∴∠B=(180°-∠BAD)=(180°-40°)=70°∵AD=DC∴∠C=CAD在△ABC中,∠BAC+∠B+∠C=180°即40°+∠C+∠C+70°=180°解得:∠C=35°故选:B【点睛】本题主要考查等腰三角形的性质:等角三角形两底角相等、等边对等角,掌握等腰三角形的性质是解题的关键.5、C【解析】试题分析:根据三角形的三边关系:两边之和大于第三边对各项逐一判断A选项,1+2<4;故不能组成三角形B选项,1+4<9;故不能组成三角形C选项,3+4>5;故可以组成三角形D选项,4+5=9;故不能组成三角形故选C考点:三角形的三边关系点评:此题主要考查学生对应用三角形三边关系判定三条线段能否构成三角形的掌握情况,注意只要两条较短的线段长度之和大于第三条线段的长度即可判定三条线段能构成一个三角形6、B【分析】先根据一次函数y=2x+1中k=2判断出函数的增减性,再根据-3<2进行解答即可.【详解】∵一次函数y=2x+1中k=2>0,∴此函数是增函数,∵−3<2,∴y1<y2.故选B.【点睛】本题考查了一次函数的知识点,解题的关键是熟练的掌握一次函数的性质与其图象上点的坐标特征.7、B【分析】把x和y都扩大10倍,根据分式的性质进行计算,可得答案.【详解】解:分式中的x和y都扩大10倍可得:,∴分式的值不变,故选B.【点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变.8、B【分析】直接利用全等三角形的性质得出AB=AD,∠B=∠ADE,进而利用已知得出答案.【详解】解:∵△ABC≌△ADE,∴AB=AD,∠B=∠ADE,∴∠B=∠ADB,∴∠BDA=∠ADE,∵∠EDC=70°,∴∠BDA=∠ADE=×(180°﹣70°)=55°.故选:B.【点睛】考核知识点:全等三角形性质.理解性质是关键.9、C【分析】根据三角形的中位线定理,得新四边形各边都等于原四边形的对角线的一半,进而可得连接对角线相等的四边形各边中点得到的四边形是菱形.【详解】解:如图,矩形中,分别为四边的中点,四边形是平行四边形,四边形是菱形.故选C.【点睛】本题主要考查了矩形的性质、菱形的判定,以及三角形中位线定理,关键是掌握三角形的中位线定理及菱形的判定.10、B【解析】利用勾股定理即可求出斜边长.【详解】由勾股定理得:斜边长为:=1.故选B.【点睛】本题考查了勾股定理;熟练掌握勾股定理,理解勾股定理的内容是解题的关键.11、D【分析】利用平行线的性质及判定定理进行判断即可.【详解】A、两直线平行,同位角才相等,错误,是假命题;B、两直线平行,同旁内角互补,不是相等,错误,是假命题;C、两直线平行,同旁内角才互补,错误,是假命题;D、平行于同一直线的两条直线平行,是真命题;故选:D.【点睛】主要考查了命题的真假判断,以及平行线的判定定理.真命题就是正确的命题,即如果命题的题设成立,那么结论一定成立.12、C【分析】根据矩形的对称性画出对称轴,然后根据等腰三角形的定义作图即可.【详解】解:作矩形的两条对称轴l1和l2,交于点P1,根据对称性可知此时P1满足题意;分别以A、B为圆心,以AB的长为半径作弧,交l1于点P2、P3;分别以A、D为圆心,以AD的长为半径作弧,交l2于点P4、P1.根据对称性质可得P1、P2、P3、P4、P1均符合题意这样的点P共有1个故选C.【点睛】此题考查的是矩形的性质和作等腰三角形,掌握矩形的性质和等腰三角形的定义是解决此题的关键.二、填空题(每题4分,共24分)13、240°.【分析】三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【详解】解:根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°﹣60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°﹣120°=240°.故答案为:240°.【点睛】本题考查多边形角度的计算,关键在于结合图形运用角度转换.14、【解析】首先过点D作DF⊥AB于E,DF⊥AC于F,易证得△DEB≌△DFC(HL),即可得∠BDC=∠EDF,又由∠EAF+∠EDF=180°,即可求得答案;【详解】解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,

∵AD是∠BOC的平分线,

∴DE=DF,

∵DP是BC的垂直平分线,

∴BD=CD,

在Rt△DEB和Rt△DFC中,

,∴Rt△DEB≌Rt△DFC.

∴∠BDE=∠CDF,

∴∠BDC=∠EDF,

∵∠DEB=∠DFC=90°,

∴∠EAF+∠EDF=180゜,

∵∠BAC=82°,

∴∠BDC=∠EDF=98°,

故答案为98°.【点睛】此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与转化思想的应用.15、x≠﹣2【解析】根据分式有意义的条件可得x+2≠0,解这个不等式即可求出答案.【详解】由题意可知:x+2≠0,∴x≠﹣2,故答案为x≠﹣2.【点睛】本题考查分式有意义的条件,解题的关键是正确理解分式有意义的条件:分母不为0.16、;【分析】由图得:【详解】由图得:∵直线和过轴上的奇数,,,,,,所对应的点A、B、C、D、E、F∴当y=1时,x=-1,故A(-1,1)当y=3时,x=-3,故B(-3,3)当y=5时,x=-5,故C(-5,5)当y=7时,x=-7,故D(-7,7)当y=9时,x=-9,故E(-9,9)当y=11时,x=-11,故F(-11,11)可得:故答案为:4;4(2n-1)【点睛】本题主要考查了一次函数综合题目,根掘找出规律,是解答本题的关键.17、【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(−x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数可得出a、b的值,即可得出答案.【详解】解:∵点与点关于轴对称,∴,,解得:,,∴,故答案为:.【点睛】本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,难度适中.18、2±1.【分析】根据算术平方根的性质可以得到≥0,即最小值是0,据此即可确定原式的最大值.【详解】∵0,∴当x=±1时,有最小值0,则当x=±1,2有最大值是2.故答案为:2,±1.【点睛】本题考查了二次根式性质,理解≥0是关键.三、解答题(共78分)19、见解析.【解析】先证明BD∥CE,得出同旁内角互补∠3+∠C=180°,再由已知得出∠4+∠C=180°,证出AC∥DF,即可得出结论.【详解】证明:∵∠1=∠2,∠2=∠DGF

∴∠1=∠DGF

∴BD∥CE

∴∠3+∠C=180°

又∵∠3=∠4

∴∠4+∠C=180°

∴AC∥DF

∴∠A=∠F.【点睛】本题考查平行线的判定与性质、对顶角相等的性质;熟练掌握平行线的判定与性质是解决问题的关键,注意两者的区别.20、(1)见解析;(2)120°.【解析】试题分析:(1)根据等边三角形的性质得出AB=BC,∠BAC=∠C=∠ABE=60°,根据SAS推出△ABE≌△BCD;(2)根据△ABE≌△BCD,推出∠BAE=∠CBD,根据三角形的外角性质求出∠AFB即可.解:(1)∵△ABC是等边三角形,∴AB=BC(等边三角形三边都相等),∠C=∠ABE=60°,(等边三角形每个内角是60°).在△ABE和△BCD中,,∴△ABE≌△BCD(SAS).(2)∵△ABE≌△BCD(已证),∴∠BAE=∠CBD(全等三角形的对应角相等),∵∠AFD=∠ABF+∠BAE(三角形的一个外角等于与它不相邻的两个内角之和)∴∠AFD=∠ABF+∠CBD=∠ABC=60°,∴∠AFB=180°﹣60°=120°.考点:全等三角形的判定与性质;等边三角形的性质.21、(1)2x2+3x﹣2;(2).【分析】(1)直接利用多项式乘法运算法则计算得出答案;(2)直接利用乘法公式计算得出答案.【详解】解:(1)原式=2x2﹣x+4x﹣2=2x2+3x﹣2;(2)原式=3+2﹣2=5﹣2.【点睛】本题考查了二次根式的混合运算,正确掌握相关运算法则是解题的关键.22、(1)见解析,A1(0,-1),B1(3,-1),C1(1,-3);(1)1【分析】(1)根据关于x轴对称的点的坐标特征写出顶点A1,B1,C1的坐标,然后描点即可;(1)用一个矩形的面积分别减去三个三角形的面积去计算△A1B1C1的面积.【详解】(1)如图,△A1B1C1为所作;A1(0,-1),B1(3,-1),C1(1,-3);(1)△A1B1C1的面积=1×3-×1×1-×3×1-×1×1=1.【点睛】本题考查了轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.23、(1)65°;(2);(3)见解析【分析】(1)由△MNB′是由△MNB翻折得到,推出∠B=∠MB′N=45°,∠MNB=∠MNB′=(180°-25°)=77.5°,推出∠NMB=∠NMB′=57.5°,可得∠BMB°=115°解决问题.(2)如图2,作MH⊥AC于H.首先证明,推出S△ACM=即可解决问题.(3)如图3,设AM=BM=a,则AC=BC=a.通过计算证明CN=DB′即可.【详解】(1)如图,∵∠C=90°,CA=CB,∴∠A=∠B=45°,∵△MNB′是由△MNB翻折得到,∴∠B=∠MB′N=45°,∠MNB=∠MNB′=(180°-25°)=77.5°,∴∠NMB=∠NMB′=57.5°,∴∠BMB′=115°,∴∠AMB′=180°-115°=65°;(2)∵△MNB′是由△MNB翻折得到,∠BMB′=30°,∴∠BMN=∠NMB′=15°,∵∠B=45°,∴∠CNM=∠B+∠NMB=60°,∵CN=MN,∴△CMN是等边三角形,∴∠MCN=60°,∵∠ACB=90°,∴∠ACM=30°,如图,作MH⊥AC于H.∴∠MHC=90°,∴MH=CM,∵S△ACM=ACMH=BCCM=CMBC=;(3)如图,设AM=BM=a,则AC=BC=a.∵NB′∥AB,∴∠CND=∠B=45°,∠MND=∠NMB,∵∠MNB=∠MND,∴∠NMB=∠MNB,∴MB=BN=a,∴CN=a-a,∵∠C=90°,∴∠CDN=∠CND=45°,∴CD=CN,∵CA=CB,∴AD=BN=a,设AD交MB′于点O,∵MB=BN,∠B=45°,∴∠BMN=,∵△MNB′是由△MNB翻折得到,∴∠BMN=∠NMB′=,∴∠AMO=180∠BMN∠NMB′=180,∴是等腰直角三角形,且AM=a,∴AO=OM=a,OB′=OD=a-a,∴DB′=OD=a-a,∴B′D=CN.【点睛】本题属于三角形综合题,考查了等腰直角三角形的性质和判定,等边三角形的判定和性质,三角形的面积等知识,解题的关键是学会利用参数解决问题,属于中考压轴题.24、m+1,【分析】根据分式的加法和除法、完全平方公式进行化简,再代入求值即可.【详解】将m=代入原式中原式.【点睛】本题考查了分式的化简求值,掌握分式的加法和除法、完全平方公式是解题的关键.25、见解析【分析】由∠1=∠2利用“内错角相等,两直线平行”可得出AE∥DF,再利用“两

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论