版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省苏州市实验中学数学八年级第一学期期末质量跟踪监视模拟试题踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.分式方程的解为()A. B. C. D.无解2.点(2,-3)关于y轴的对称点是()A. B. C. D.3.如图,,则图中全等三角形共有()A.1对 B.2对 C.3对 D.4对4.如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,测得OA=8米,OB=6米,A、B间的距离不可能是()A.12米 B.10米 C.15米 D.8米5.下列选项所给条件能画出唯一的是()A.,, B.,,C., D.,,6.估算的值在()A.4和5之间 B.5和6之间 C.6和7之间 D.7和8之间7.如图,AD是的中线,E,F分别是AD和AD延长线上的点,且,连结BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个 B.2个 C.3个 D.4个8.已知,则化简的结果是().A.4 B.6-2x C.-4 D.2x-69.如图①,矩形长为,宽为,用剪刀分别沿矩形的两组对边中点连线剪开,把它分成四个全等的矩形,然后按图②拼成一个新的正方形,则图②中阴影部分面积可以表示为()A. B. C. D.10.如图是两个全等的三角形纸片,其三边长之比为,按图中方法分别将其对折,使折痕(图中虚线)过其中的一个顶点,且使该项点所在两边重合,记折叠后不重叠部分面积分别为,已知,则纸片的面积是()A. B. C. D.11.点P(﹣2,3)关于y轴对称点的坐标在第()象限A.第一象限 B.第二象限 C.第三象限 D.第四象限12.若点在正比例函数的图象上,则下列各点不在正比例函数的图象上的是()A. B. C. D.二、填空题(每题4分,共24分)13.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=cm.14.要使关于的方程的解是正数,的取值范围是___..15.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为7cm,则正方形A,B,C,D的面积之和为___________cm1.16.已知一个正数的两个平方根分别为和,则的值为__________.17.已知x+y=1,则x²xyy²=_______18.中,厘米,厘米,点为的中点,如果点在线段上以2厘米/秒的速度由点向点运动,同时,点在线段上由点向点运动,若点的运动速度为厘米/秒,则当与全等时,的值为______厘米/秒.三、解答题(共78分)19.(8分)如图所示,四边形ABCD中AB=AD,AC平分∠BCD,AE⊥BC,AF⊥CD,图中有无和△ABE全等的三角形?请说明理由20.(8分)已知长方形的长为a,宽为b,周长为16,两边的平方和为1.求此长方形的面积.21.(8分)如图,在四边形中,,是的中点,连接并延长交的延长线于点,点在边上,且.(1)求证:≌.(2)连接,判断与的位置关系并说明理由.22.(10分)射击训练班中的甲、乙两名选手在5次射击训练中的成绩依次为(单位:环):甲:8,8,7,8,9乙:5,9,7,10,9教练根据他们的成绩绘制了如下尚不完整的统计图表:选手平均数众数中位数方差甲8b80.4乙α9c3.2根据以上信息,请解答下面的问题:(1)α=,b=,c=;(2)完成图中表示乙成绩变化情况的折线;(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是什么?(4)若选手乙再射击第6次,命中的成绩是8环,则选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会.(填“变大”、“变小”或“不变”)23.(10分)如图,在某一禁毒基地的建设中,准备再一个长为米,宽为米的长方形草坪上修建两条宽为米的通道.(1)求剩余草坪的面积是多少平方米?(2)若,,求剩余草坪的面积是多少平方米?24.(10分)学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?25.(12分)如图,Rt△ABC中,∠ACB=90°,AC=BC,点D在斜边AB上,且AD=AC,过点B作BE⊥CD交直线CD于点E.(1)求∠BCD的度数;(2)求证:CD=2BE.26.如图,△ABC是等边三角形,△ACE是等腰三角形,∠AEC=120°,AE=CE,F为BC中点,连接AE.(1)直接写出∠BAE的度数为;(2)判断AF与CE的位置关系,并说明理由.
参考答案一、选择题(每题4分,共48分)1、D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.故选D.点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.2、C【解析】让两点的横坐标互为相反数,纵坐标不变可得所求点的坐标.【详解】解:∵所求点与点A(2,–3)关于y轴对称,∴所求点的横坐标为–2,纵坐标为–3,∴点A(2,–3)关于y轴的对称点是(–2,–3).故选C.【点睛】本题考查两点关于y轴对称的知识;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标相同.3、C【分析】先利用SAS证出△ABD≌△CDB,从而得出AD=CB,再利用SSS证出△ABC≌△CDA,从而得出∠ABO=∠CDO,最后利用AAS证出△ABO≌△CDO,即可得出结论.【详解】解:在△ABD和△CDB中∴△ABD≌△CDB∴AD=CB在△ABC和△CDA中∴△ABC≌△CDA∴∠ABO=∠CDO在△ABO和△CDO中∴△ABO≌△CDO共有3对全等三角形故选C.【点睛】此题考查的是全等三角形的判定及性质,掌握全等三角形的各个判定定理是解决此题的关键.4、C【解析】试题分析:根据两边之和大于第三边,两边之差小于第三边,AB的长度在2和14之间,故选C.考点:三角形三边关系.A5、B【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【详解】解:A、3+4<8,不能构成三角形,故A错误;B、,,,满足ASA条件,能画出唯一的三角形,故B正确;C、,,不能画出唯一的三角形,故C错误;D、,,,不能画出唯一的三角形,故D错误;故选:B.【点睛】此题主要考查了全等三角形的判定以及三角形三边关系,正确把握全等三角形的判定方法是解题关键.6、D【分析】由题意利用“夹逼法”得出的范围,继而分析运算即可得出的范围.【详解】解:∵,∴4<<5,∴7<+3<1.故选:D.【点睛】本题考查估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.7、C【分析】根据“”可证明,则可对④进行判断;利用全等三角形的性质可对①进行判断;由于与不能确定相等,则根据三角形面积公式可对②进行判断;根据全等三角形的性质得到,则利用平行线的判定方法可对③进行判断.【详解】解:是的中线,,,,,所以④正确;,所以①正确;与不能确定相等,和面积不一定相等,所以②错误;,,,所以③正确;故选:.【点睛】本题考查了全等三角形的判定,熟悉全等三角形的5种判定方法是解题的关键.8、A【分析】根据绝对值的性质以及二次根式的性质即可求出答案.【详解】解:因为,所以,,则,故选:A.【点睛】本题考查二次根式,解题的关键是熟练运用绝对值的性质以及二次根式的性质.9、C【分析】先求出图②中大正方形的边长,继而得出它的面积,然后根据阴影部分的面积=大正方形的面积-矩形的面积即可得出答案.【详解】由题意可得,图②中大正方形的的边长为,则它的面积是又∵图①中原矩形的面积是∴中间阴影部分的面积故选:C【点睛】本题考查的知识点是完全平方公式的计算及用完全平方公式法进行因式分解,认真分析图形的结构,找到相应的边,列出计算阴影部分的面积的代数式是解题的关键和难点.10、A【分析】设AC=FH=3x,则BC=GH=4x,AB=GF=5x,根据勾股定理即可求得CD的长,利用x表示出SA,同理表示出SB,根据,即可求得x的值,进而求得三角形的面积.【详解】解:如图,设AC=FH=3x,则BC=GH=4x,AB=GF=5x.设CD=y,则BD=4x-y,DE=CD=y,在直角△BDE中,BE=5x-3x=2x,根据勾股定理可得:4x2+y2=(4x-y)2,解得:y=x,则SA=BE•DE=×2x•x=x2,同理可得:SB=x2,∵SA-SB=10,∴x2-x2=10,∴x2=12,∴纸片的面积是:×3x•4x=6x2=1.故选A.【点睛】本题主要考查了折叠的性质,勾股定理,根据勾股定理求得CD的长是解题的关键.11、A【解析】∵点P(-2,3)在第二象限,∴点P关于轴的对称点在第一象限.故选A.12、D【分析】先根据点A在正比例函数的图象上,求出正比例函数的解析式,再把各点代入函数解析式验证即可.【详解】解:∵点在正比例函数的图象上,,,故函数解析式为:;A、当时,,故此点在正比例函数图象上;B、当时,,故此点在正比例函数图象上;C、当时,,故此点在正比例函数图象上;D、当时,,故此点不在正比例函数图象上;故选:D.【点睛】本题考查的是正比例函数的图象上点的坐标,要明确图象上点的坐标一定适合此函数的解析式是解答此题的关键.二、填空题(每题4分,共24分)13、1.【解析】∵∠ACB=90°,∴∠ECF+∠BCD=90°.∵CD⊥AB,∴∠BCD+∠B=90°.∴∠ECF=∠B,在△ABC和△FEC中,∵∠ECF=∠B,EC=BC,∠ACB=∠FEC=90°,∴△ABC≌△FEC(ASA).∴AC=EF.∵AE=AC﹣CE,BC=2cm,EF=5cm,∴AE=5﹣2=1cm.14、且a≠-3.【解析】分析:解分式方程,用含a的式子表示x,由x>0,求出a的范围,排除使分母为0的a的值.详解:,去分母得,(x+1)(x-1)-x(x+2)=a,去括号得,x2-1-x2-2x=a,移项合并同类项得,-2x=a+1,系数化为1得,x=.根据题意得,>0,解得a<-1.当x=1时,-2×1=a+1,解得a=-3;当x=-2时,-2×(-2)=a+1,解得a=3.所以a的取值范围是a<-1且a≠-3.故答案为a<-1且a≠-3.点睛:本题考查了由分式方程的解的情况求字母系数的取值范围,这种问题的一般解法是:①根据未知数的范围求出字母的范围;②把使分母为0的未知数的值代入到去分母后的整式方程中,求出对应的字母系数的值;③综合①②,求出字母系数的范围.15、2【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【详解】解:如图,∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A的面积=a1,正方形B的面积=b1,正方形C的面积=c1,正方形D的面积=d1,又∵a1+b1=x1,c1+d1=y1,∴正方形A、B、C、D的面积和=(a1+b1)+(c1+d1)=x1+y1=71=2cm1.故答案为:2.【点睛】本题考查了勾股定理,注意掌握直角三角形中,两直角边的平方和等于斜边的平方是解答本题的关键.16、1【分析】根据可列式,求解到的值,再代入即可得到最后答案.【详解】解:和为一个正数的平方根,解得故答案为:1.【点睛】本题考查了平方根的知识,要注意到正数的平方根有两个,一正一负,互为相反数.17、【分析】根据完全平方公式即可得出答案.【详解】∵x+y=1∴∴【点睛】本题考查的是完全平方公式:.18、2或1【分析】分两种情况:当时,,当时,,分别进行讨论即可得出答案.【详解】∵点为的中点,AB=12cm当时,,此时P运动的时间为∴Q的运动速度为当时,,∴此时P运动的时间为∴Q的运动速度为故答案为:2或1.【点睛】本题主要考查全等三角形的性质,掌握全等三角形的性质并分情况讨论是解题的关键.三、解答题(共78分)19、证△ABE≌△ADF(AD=AB、AE=AF)【分析】由题中条件AC平分∠BCD,AE⊥BC,AF⊥CD,可得AE=AF,由AB=AD,可由HL判定Rt△ABE≌Rt△ADF,即可得证.【详解】图中△ADF和△ABE全等.∵AC平分∠BCD,AF⊥CD,AE⊥CE;∴AF=AE,∠AFD=∠AEB=90°在Rt△ADF与Rt△ABE中,AB=AD,AF=AE∴Rt△ADF≌Rt△ABE.【点睛】本题考查的是全等三角形的判定定理HL,判定定理即“斜边,直角边判定定理”判定直角三角形全等.注意应用.20、3【分析】先根据长方形的周长得到a+b=8,然后再根据两边的平方和为1,即a2+b2=1;最后变形完全平方公式求出ab的值即可【详解】解:∵a+b=16÷2=8,∴(a+b)2=a2+2ab+b2=2.∵a2+b2=1,∴ab=3.【点睛】本题考查了因式分解的应用,弄清题意、确定各量之间的关系以及灵活运用完全平方公式是解答本题的关键.21、(1)见解析;(2),见解析【分析】(1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E为AB中点得到一对边相等,利用AAS即可得出△ADE≌△BFE;(2)∠GDF=∠ADE,以及(1)得出的∠ADE=∠BFE,等量代换得到∠GDF=∠BFE,利用等角对等边得到GF=GD,即三角形GDF为等腰三角形,再由(1)得到DE=FE,即GE为底边上的中线,利用三线合一即可得到GE与DF垂直.【详解】(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS);(2)EG⊥DF,理由如下:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,∴DG=FG,由(1)得:△ADE≌△BFE∴DE=FE,即GE为DF上的中线,又∵DG=FG,∴EG⊥DF.【点睛】此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,熟练掌握判定与性质是解本题的关键.22、(1):8,8,9;(2)见解析;(3)两人的平均成绩相同,而甲的成绩的方差小,即甲的成绩较稳定;(4)变小.【解析】(1)依据平均数、众数以及中位数的概念进行计算判断即可;
(2)依据乙的成绩:5,9,7,10,9,即可完成图中表示乙成绩变化情况的折线;
(3)两人的平均成绩相同,而甲的成绩的方差小,即甲的成绩较稳定,故选择甲参加射击比赛;
(4)依据选手乙这6次射击成绩5,9,7,10,9,8,即可得到方差的大小.【详解】解:(1)由题可得,a=(5+9+7+10+9)=8;甲的成绩7,8,8,8,9中,8出现的次数最多,故众数b=8;而乙的成绩5,7,9,9,10中,中位数c=9;故答案为:8,8,9;(2)乙成绩变化情况的折线如下:(3)教练根据这5次成绩,决定选择甲参加射击比赛,教练的理由是两人的平均成绩相同,而甲的成绩的方差小,即甲的成绩较稳定.(4)由题可得,选手乙这6次射击成绩5,9,7,10,9,8的方差=[(5﹣8)2+(9﹣8)2+(10﹣8)2+(9﹣8)2+(8﹣8)2]=2.5<3.2,∴选手乙这6次射击成绩的方差与前5次射击成绩的方差相比会变小.故答案为:变小.【点睛】本题主要考查数据的处理、分析以及统计图表,熟悉掌握是关键.23、(1);(2)1.【分析】(1)根据题意和图形,可以用代数式表示出剩余草坪的面积;(2)将,代入(1)中的结果,即可解答本题.【详解】(1)剩余草坪的面积是:平方米;(2)当时,=1,即时,剩余草坪的面积是1平方米.【点睛】本题主要考查整式的混合运算,根据题意列出代数式是解题关键.24、(1)1辆甲种客车的租金是400元,1辆乙种客车的租金是280元;(2)1.【分析】(1)可设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,根据等量关系:①1辆甲种客车和3辆乙种客车共需租金1240元,②3辆甲种客车和2辆乙种客车共需租金1760元,列出方程组求解即可;(2)由于求最节省的租车费用,可知租用甲种客车6辆,租用乙客车2辆,进而求解即可.【详解】解:(1)设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,依题意有:,解得:答:1辆甲种客车的租金是400元,1辆乙种客车的租金是280元;(2)租用甲种客车6辆,租用乙客车2辆是最节省的租车费用,400×6+280×2=2400+560=1(元).答:最节省的租车费用是1元.【点睛】本题考查一元一次不等式的应用;二元一次方程组的应用;最值问题.25、(1)22.5°;(2)见解析【分析】(1)首先根据等腰直角三角形求出的度数,然后利用等腰三角形的性质和三角形内角和求出的度数,最后余
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版教育培训合同模板范本系列
- 2024年度水处理设施运营管理服务合同
- 2024年度建筑材料采购与销售合同
- 二零二四年度股权激励合同(高科技企业)
- 2024年度甲方购买乙方提供的技术开发服务合同
- 2024年度宁波住宅小区购房合同
- 二零二四年国际艺术品拍卖会委托代理合同
- 2024年度大豆电商平台运营合同
- 种植基地产品批发合同范本
- 2024版饭店合作伙伴关系与协作合同
- 2024年广东省公务员录用考试《行测》试题及答案解析
- 浙江省杭州市2025届高三上学期一模英语试题 含答案
- 2025届高三化学一轮复习 原电池 化学电源(第一课时)课件
- 2024-2030年全球学前教育行业经营规模研究与投资模式分析研究报告
- 《算法设计与分析基础》(Python语言描述) 课件 第4章分治法2
- 制氢技术与工艺 课件 第8章 生物质能制氢
- 旅游行业人才培养需求分析
- 11.2 树立正确的人生目标 (同步课件)-2024-2025学年统编版道德与法治七年级上册
- 车联网在线升级( OTA )安全技术要求与测试方法 征求意见稿
- 华能新能源股份有限公司招聘笔试题库2024
- 消费者画像构建与细分
评论
0/150
提交评论