版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市市西初级中学2025届八年级数学第一学期期末质量跟踪监视模拟试题质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.()A. B. C. D.2019×20202.下列四个实数中,无理数是()A.3.14 B.﹣π C.0 D.3.如图,在中,,在上取一点,使,过点作,连接,使,若,则下列结论不正确的是()A. B. C.平分 D.4.如图,点是内任意一点,且,点和点分别是射线和射线上的动点,当周长取最小值时,则的度数为()A.145° B.110° C.100° D.70°5.下列运算中,错误的是()A. B. C. D.6.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式;也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,那么该三角形的面积为S=.已知△ABC的三边长分别为1,2,,则△ABC的面积为().A.1 B. C. D.7.如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,D为AC上一点,将△ABD沿BD折叠,使点A恰好落在BC上的E处,则折痕BD的长是()A.5 B. C.3 D.8.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或99.已知,且,则的值为()A.2 B.4 C.6 D.810.已知△A1B1C1与△A2B2C2中,A1B1=A2B2,∠A1=∠A2,则添加下列条件不能判定△A1B1C1≌△A2B2C2的是()A.∠B1=∠B2 B.A1C1=A2C2 C.B1C1=B2C2 D.∠C1=∠C2二、填空题(每小题3分,共24分)11.点关于x轴对称点M的坐标为_________.12.因式分解:2x3y﹣8xy3=_____.13.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,AB=4,点D是BC上一动点,以BD为边在BC的右侧作等边△BDE,F是DE的中点,连结AF,CF,则AF+CF的最小值是_____.14.点(−1,3)关于轴对称的点的坐标为____.15.如果式子在实数范围内有意义,那么x的取值范围是____.16.在Rt△ABC中,∠C=90°,AB=13,BC=12,则AC=___________.17.跳远运动员李阳对训练效果进行测试.6次跳远的成绩如下:7.5,7.7,7.6,7.7,7.9,7.8(单位:m)这六次成绩的平均数为7.7m,方差为.如果李阳再跳一次,成绩为7.7m.则李阳这7次跳远成绩的方差_____(填“变大”、“不变”或“变小”).18.如图,AB=AC=6,,BD⊥AC交CA的延长线于点D,则BD=___________.三、解答题(共66分)19.(10分)如图,已知,是,的平分线,,求证:.20.(6分)计算:①②21.(6分)阅读材料1:对于两个正实数,由于,所以,即,所以得到,并且当时,阅读材料2:若,则,因为,,所以由阅读材料1可得:,即的最小值是2,只有时,即=1时取得最小值.根据以上阅读材料,请回答以下问题:(1)比较大小(其中≥1);-2(其中<-1)(2)已知代数式变形为,求常数的值(3)当=时,有最小值,最小值为(直接写出答案).22.(8分)下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y,原式=(y+2)(y+6)+4
(第一步)=y2+8y+16
(第二步)=(y+4)2(第三步)=(x2-4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的______.A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?______.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果______.(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.23.(8分)为“厉行节能减排,倡导绿色出行”,某公司拟在我县甲、乙两个街道社区试点投放一批共享单车(俗称“小黄车”),这批自行车包括A、B两种不同款型,投放情况如下表:成本单价(单位:元)投放数量(单位:辆)总价(单位:元)A型5050B型50成本合计(单位:元)7500(1)根据表格填空:本次试点投放的A、B型“小黄车”共有辆;用含有的式子表示出B型自行车的成本总价为;(2)试求A、B两种款型自行车的单价各是多少元?(3)经过试点投放调查,现在该公司决定采取如下方式投放A型“小黄车”:甲街区每100人投放n辆,乙街区每100人投放(n+2)辆,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有人,求甲街区每100人投放A型“小黄车”的数量.24.(8分)如图,BF,CG分别是的高线,点D,E分别是BC,GF的中点,连结DF,DG,DE,(1)求证:是等腰三角形.(2)若,求DE的长.25.(10分)已知,如图,在ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.26.(10分)先化简,再求值:,其中,.
参考答案一、选择题(每小题3分,共30分)1、C【分析】首先令,进行整体代换,然后进行整式混合运算即可得解.【详解】令原式===2021故选:C.【点睛】此题主要考查利用整体代换求解整式混合运算,熟练掌握,即可解题.2、B【分析】根据无理数的定义,可得答案.【详解】解:3.14,0,,都是有理数;﹣π是无理数.故选:B.【点睛】本题考查无理数的定义与形式,理解掌握无理数的定义是关键.3、C【分析】根据垂直于同一条直线的两直线平行即可判断A,根据全等三角形的性质即可判断B,根据同角的余角相等即可判断D,排除法即可求解.【详解】解:∵,∴∠ACB=∠FEC=90°,∴EF∥BC,∴∠F=∠FCB,∴A正确,又,∴△ACB≌△FEC,∴CE=BC=5cm,AC=EF=12cm,∴AE=AC-EC=12-5=7cm,∴B正确,∴,∵∠A+∠B=90°,∴∠FCB+∠B=90°,∴∴D正确,排除法选择C,无法证明.【点睛】本题考查了全等三角形的判定和性质,平行线的性质等知识,熟悉证明三角形全等的方法是解题关键.4、B【分析】分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于M,交OB于N,△PMN的周长=P1P2,然后得到等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,即可得出∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°.【详解】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则
OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,∴∠P1OM=∠MOP,∠NOP=∠NOP2,
根据轴对称的性质,可得MP=P1M,PN=P2N,则
△PMN的周长的最小值=P1P2,
∴∠P1OP2=2∠AOB=70°,
∴等腰△OP1P2中,∠OP1P2+∠OP2P1=110°,
∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=110°,
故选:B.【点睛】本题考查了轴对称-最短路线问题,正确作出辅助线,得到等腰△OP1P2中∠OP1P2+∠OP2P1=110°是关键.凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.5、D【解析】分式的基本性质是分式的分子、分母同时乘以或除以同一个非1的数或式子,分式的值不变.据此作答.【详解】解:A、分式的分子、分母同时乘以同一个非1的数c,分式的值不变,故A正确;
B、分式的分子、分母同时除以同一个非1的式子(a+b),分式的值不变,故B正确;
C、分式的分子、分母同时乘以11,分式的值不变,故C正确;
D、,故D错误.
故选D.【点睛】本题考查了分式的基本性质.无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为1.6、A【分析】根据材料中公式将1,2,代入计算即可.【详解】解:∵△ABC的三边长分别为1,2,,∴S△ABC==1故选A.【点睛】此题考查的是根据材料中的公式计算三角形的面积,掌握三斜求积公式是解决此题的关键.7、C【分析】根据勾股定理易求BC=1.根据折叠的性质有AB=BE,AD=DE,∠A=∠DEB=90°,
在△CDE中,设AD=DE=x,则CD=8-x,EC=1-6=2.根据勾股定理可求x,在△ADE中,运用勾股定理求BD.【详解】解:∵∠A=90°,AB=6,AC=8,
∴BC=1.
根据折叠的性质,AB=BE,AD=DE,∠A=∠DEB=90°.
∴EC=1-6=2.
在△CDE中,设AD=DE=x,则CD=8-x,根据勾股定理得
(8-x)2=x2+22.
解得x=4.
∴DE=4.
∴BD==4,故选C.【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应边、角相等.8、D【解析】试题分析:设内角和为1010°的多边形的边数是n,则(n﹣2)•110°=1010°,解得:n=1.则原多边形的边数为7或1或2.故选D.考点:多边形内角与外角.9、D【分析】通过完全平方公式得出的值,然后根据分式的基本性质约分即可.【详解】∵故选:D.【点睛】本题主要考查分式的化简求值,掌握完全平方公式和分式的基本性质是解题的关键.10、C【分析】根据全等三角形的判定方法一一判断即可.【详解】解:A、根据ASA可以判定两个三角形全等,故A不符合题意;B、根据SAS可以判定两个三角形全等,故B不符合题意.C、SSA不可以判定两个三角形全等,故C符合题意.D、根据AAS可以判定两个三角形全等,故D不符合题意.故选:C.【点睛】本题考查了全等三角形的判定,解题的关键是熟练掌握三角形全等的判定方法.二、填空题(每小题3分,共24分)11、(-3,-2)【分析】根据平面直角坐标系中,两点关于x轴对称,两点坐标的关系,即可求出答案.【详解】∵点关于x轴对称点是M,∴点M的坐标为(-3,-2),故答案是:(-3,-2).【点睛】本题主要考查平面直角坐标系中,两点关于x轴对称,两点坐标的关系:横坐标相等,纵坐标互为相反数,理解并牢记两点坐标的关系是解题的关键.12、【分析】先提取公因式,再利用平方差公式:分解即可.【详解】原式故答案为:.【点睛】本题考查了利用提取公因式和平方差公式相结合进行因式分解,熟记平方差公式是解题关键.13、2.【分析】以BC为边作等边三角形BCG,连接FG,AG,作GH⊥AC交AC的延长线于H,根据等边三角形的性质得到DC=EG,根据全等三角形的性质得到FC=FG,于是得到在点D的运动过程中,AF+FC=AF+FG,而AF+FG≥AG,当F点移动到AG上时,即A,F,G三点共线时,AF+FC的最小值=AG,根据勾股定理即可得到结论.【详解】以BC为边作等边三角形BCG,连接FG,AG,
作GH⊥AC交AC的延长线于H,
∵△BDE和△BCG是等边三角形,
∴DC=EG,
∴∠FDC=∠FEG=120°,
∵DF=EF,
∴△DFC≌△EFG(SAS),
∴FC=FG,
∴在点D的运动过程中,AF+FC=AF+FG,而AF+FG≥AG,
∴当F点移动到AG上时,即A,F,G三点共线时,AF+FC的最小值=AG,
∵BC=CG=AB=2,AC=2,
在Rt△CGH中,∠GCH=30°,CG=2,
∴GH=1,CH=,
∴AG===2,
∴AF+CF的最小值是2.【点睛】此题考查轴对称-最短路线问题,等边三角形的性质,直角三角形的性质,正确的作出辅助线是解题的关键.14、(-1,-3).【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点(-1,3)关于x轴对称的点的坐标为(-1,-3),
故答案是:(-1,-3).【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标变化规律.15、【分析】根据二次根式由意义的条件是:被开方数大于或等于0,即可求解.【详解】由题意得:,解得:,故答案为:.【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.16、5【分析】利用勾股定理求解.【详解】解:在Rt△ABC中,∠C=90°,∴AC=.故答案为5.【点睛】掌握勾股定理是本题的解题关键.17、变小【分析】根据平均数的求法先求出这组数据的平均数,再根据方差公式求出这组数据的方差,然后进行比较即可求出答案.【详解】解:∵李阳再跳一次,成绩为7.7m,∴这组数据的平均数是=7.7,∴这7次跳远成绩的方差是:S2=[(7.5﹣7.7)2+(7.6﹣7.7)2+3×(7.7﹣7.7)2+(7.8﹣7.7)2+(7.9﹣7.7)2]=,∴方差变小;故答案为:变小.【点睛】本题主要考查平均数和方差,掌握平均数和方差的求法是解题的关键.18、3【分析】由等腰三角形的性质得:利用含的直角三角形的性质可得答案.【详解】解:AB=AC=6,,BD⊥AC,故答案为:【点睛】本题考查的是等腰三角形与含的直角三角形的性质,三角形的外角的性质,掌握这三个性质是解题的关键.三、解答题(共66分)19、见解析【分析】先证明,进而可证,然后根据内错角相等,两直线平行即可证明结论成立.【详解】证明:∵是的平分线(已知),∴(角平分线的定义).∵是的平分线(已知),∴(角平分线的定义).又∵(已知),∴(等式的性质).∵(已知),∴(等量代换).∴(内错角相等,两直线平行).【点睛】本题考查了行线的判定方法,熟练掌握平行线的行线的判定方法是解答本题的关键.平行线的判定方法:①两同位角相等,两直线平行;
②内错角相等,两直线平行;③同旁内角互补,两直线平行.也考查了角平行线的定义.20、①;②【分析】①根据二次根式的混合运算法则计算;②利用加减消元法求解.【详解】解:①===;②整理得:,①×2+②得:11x=22,解得:x=2,代入①中,解得:y=3,∴方程组的解为:.【点睛】本题考查了二次根式的混合运算以及二元一次方程组,解题的关键是掌握运算法则和加减消元法.21、(1);(2);(1)0,1.【分析】(1)根据求差法比较大小,由材料1可知将结果用配方法变形即可得出结论.(2)根据材料(2)的方法,把代数式变形为,解答即可;(1)先将变形为,由材料(2)可知时(即x=0,)有最小值.【详解】解:(1),所以;当时,由阅读材料1可得,,所以;(2),所以;(1)∵x≥0,∴即:当时,有最小值,∴当x=0时,有最小值为1.【点睛】本题主要考查了分式的混合运算和配方法的应用.读懂材料并加以运用是解题的关键.22、(1)C;(2)不彻底,(x-2)1;(3)(x-1)1【分析】(1)根据分解因式的过程直接得出答案;(2)该同学因式分解的结果不彻底,进而再次分解因式得出即可;(3)将(x2-2x)看作整体进而分解因式即可.【详解】(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C;(2)该同学因式分解的结果不彻底,原式=(x2-1x+1)2=(x-2)1;故答案为:不彻底,(x-2)1;(3)(x2-2x)(x2-2x+2)+1=(x2-2x)2+2(x2-2x)+1=(x2-2x+1)2=(x-1)1.【点睛】此题主要考查了公式法分解因式,熟练利用完全平方公式分解因式是解题关键,注意分解因式要彻底.23、(1)100;50(x+10);
(2)70元和80元;(3)2辆.【分析】(1)看图填数即可;
(2)设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,根据成本共计7500元,列方程求解即可;
(3)根据两个街区共有人,列出分式方程进行求解并检验即可.【详解】解:(1)由图表表可知,本次试点投放的A、B型“小黄车”共有:50+50=100(辆);
B型自行车的成本总价为:
故答案为:100;50(x+10)
(2)由A型车的成本单价为x元,B型车的成本单价为(x+10)元,∴总价为,
解得,
∴,
∴A、B两型自行车的单价分别是70元和80元;(3)依题意,可列得方程:解得:n=2
经检验:n=2是所列方程的解,
∴甲街区每100人投放A型“小黄车”2辆.【点睛】本题主要考查了一元一次方程以及分式方程的应用,解题时注意:列分式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中考物理复习中考趋势题3项目式学习课件
- 第七八单元及总复习教案
- 物流配送司机招聘合同模板
- 四年级科学下册教案
- 城市广场改造专业施工合同范本
- 七台河市公园公共艺术展示规范
- 市政工程工字钢租赁合同
- 公共交通建设资金使用暂行条例
- 医疗中心雨污管网维护合同
- 企业车辆更新政策样本
- 第三次全国农作物种质资源普查与收集行动实施方案
- 第二单元 探索 3 物联网的定位技术 (教学设计) 2024-2025学年苏科版(2023) 初中信息技术八年级上册
- 部编版《道德与法治》二年级上册第9课《这些是大家的》课件(共50张课件)
- 2024年(每周一练)语文五年级上册基础练习题(含答案)
- 2024-2030年中国中低温煤焦油行业现状调研与发展前景预测分析研究报告
- 2025届贵州省贵阳市一中高三六校第一次联考物理试卷含解析
- GB/T 10069.3-2024旋转电机噪声测定方法及限值第3部分:噪声限值
- 旅游管理专业建设实施方案
- 《红楼梦》菊花诗鉴赏-部编版2019下册语文课件
- 一年级下册道德与法治《分享真快乐》课件【新部编版】
- 统编版(2024新版)道德与法治七年级上册8.1《认识生命》教案
评论
0/150
提交评论