版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春市汽车经济开发区第五校2025届数学八上期末质量跟踪监视模拟试题期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于()A.5 B.4 C.3 D.22.一个多边形的每个外角都等于60°,则这个多边形的边数为()A.8 B.7 C.6 D.53.是一个完全平方式,则k等于()A. B.8 C. D.44.用直角三角板,作△ABC的高,下列作法正确的是()A. B.C. D.5.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2019次运动后,动点P的坐标是()A.(2018,2) B.(2019,0)C.(2019,1) D.(2019,2)6.一个多边形的内角和是720°,这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形7.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15° B.30° C.45° D.60°8.如图,已知,欲证,还必须从下列选项中补选一个,则错误的选项是()A. B.C. D.9.下列等式成立的是()A. B.(a2)3=a6 C.a2.a3=a6 D.10.边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为()A. B. C. D.11.下列计算正确的是()A.(a2)3=a5 B.C.a6÷a2=a4 D.12.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC⋅AH D.AB=AD二、填空题(每题4分,共24分)13.对于实数a,b,定义运算“※”:a※b=,例如3※1,因为3<1.所以3※1=3×1=2.若x,y满足方程组,则x※y=_____.14.已知A(1,﹣2)与点B关于y轴对称.则点B的坐标是______.15.如图,正比例函数y=2x的图象与一次函数y=-3x+k的图象相交于点P(1,m),则两条直线与x轴围成的三角形的面积为_______.16.已知CD是Rt△ABC的斜边AB上的中线,若∠A=35°,则∠BCD=_____________.17.已知m=2n+1,则m2﹣4mn+4n2﹣5的值为____.18.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边长分别为6m和8m,斜边长为10m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是_____.三、解答题(共78分)19.(8分)已知、为实数,且满足.(1)求,的值;(2)若,为的两边,第三边为,求的面积.20.(8分)已知三角形△ABC,AB=3,AC=8,BC长为奇数,求BC的长.21.(8分)如图,在等腰△ABC中,AC=BC,D,E分别为AB,BC上一点,∠CDE=∠A.(1)如图1,若BC=BD,∠ACB=90°,则∠DEC度数为_________°;(2)如图2,若BC=BD,求证:CD=DE;(3)如图3,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE-BE的值.22.(10分)计算.(1).(2).23.(10分)如图,,,为中点(1)若,求的周长和面积.(2)若,求的面积.24.(10分)如图,已知点和点,点和点是轴上的两个定点.(1)当线段向左平移到某个位置时,若的值最小,求平移的距离.(2)当线段向左或向右平移时,是否存在某个位置,使四边形的周长最小?请说明如何平移?若不存在,请说明理由.25.(12分)阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:,即③把方程①代入③得:,∴,所代入①得,∴方程组的解为,请你解决以下问题:(1)模仿小军的“整体代换”法解方程组,(2)已知满足方程组,求的值和的值.26.按要求完成下列各题:(1)计算:(2)分解因式:
参考答案一、选择题(每题4分,共48分)1、B【解析】根据等边三角形的性质和含30°的直角三角形的性质解答即可.【详解】∵在△ABC中,∠B=∠C=60°,∴∠A=60°,∵DE⊥AB,∴∠AED=30°,∵AD=1,∴AE=2,∵BC=6,∴AC=BC=6,∴CE=AC﹣AE=6﹣2=4,故选:B.【点睛】考查含30°的直角三角形的性质,关键是根据等边三角形的性质和含30°的直角三角形的性质解答.2、C【解析】试题解析:根据题意得:360°÷60°=6,所以,该多边形为六边形.故选C.考点:多边形的内角与外角.3、A【分析】根据完全平方公式:,即可得出结论.【详解】解:∵是完全平方式,∴解得:故选A.【点睛】此题考查的是根据完全平方式,求一次项中的参数,掌握两个完全平方公式的特征是解决此题的关键.4、D【解析】分析:根据高的定义一一判断即可.详解:三角形的高必须是从三角形的一个顶点向对边或对边的延长线作的垂线段.可以判断A,B,C虽然都是从三角形的一个顶点出发的,但是没有垂直对边或对边的延长线.故选D.点睛:考查高的画法,是易错点,尤其注意钝角三角形高的画法.5、D【分析】分析点P的运动规律,找到循环次数即可.【详解】解:分析图象可以发现,点P的运动每4次纵坐标循环一次,横坐标等于运动的次数,∴2019=4×504+3,当第504循环结束时,点P位置在(2016,0),在此基础之上运动三次到(2019,2),故选:D.【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.6、B【解析】利用n边形的内角和可以表示成(n﹣2)•180°,结合方程即可求出答案.解:设这个多边形的边数为n,由题意,得(n﹣2)180°=720°,解得:n=6,故这个多边形是六边形.故选B.7、A【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【详解】∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB-∠ECB=15°,故选A.【点睛】此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.8、C【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【详解】A、符合ASA定理,即根据ASA即可推出△ABD≌△ACD,故本选项错误;B、符合AAS定理,即根据AAS即可推出△ABD≌△ACD,故本选项错误;C、不符合全等三角形的判定定理,即不能推出△ABD≌△ACD,故本选项正确;D、符合SAS定理,即根据SAS即可推出△ABD≌△ACD,故本选项错误;故选:C.【点睛】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.9、B【分析】直接利用零指数幂的性质、幂的乘方法则、同底数幂的乘法法则、积的乘方法则分别化简得出答案.【详解】解:A、a0=1(a≠0),故此选项错误;
B、根据幂的乘方法则可得(a2)3=a6,正确;
C、根据同底数幂的乘法法则可得a2.a3=a5,故此选项错误;
D、根据积的乘方法则可得,故此选项错误;
故选:B.【点睛】此题主要考查了零指数幂的性质、幂的乘方法则、同底数幂的乘法法则、积的乘方法则等知识,正确掌握运算法则是解题关键.10、A【解析】连接AD、DB、DF,求出∠AFD=∠ABD=90°,根据HL证两三角形全等得出∠FAD=60°,求出AD∥EF∥GI,过F作FZ⊥GI,过E作EN⊥GI于N,得出平行四边形FZNE得出EF=ZN=a,求出GI的长,求出第一个正六边形的边长是a,是等边三角形QKM的边长的;同理第二个正六边形的边长是等边三角形GHI的边长的;求出第五个等边三角形的边长,乘以即可得出第六个正六边形的边长.连接AD、DF、DB.∵六边形ABCDEF是正六边形,∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt△ABD和RtAFD中∴Rt△ABD≌Rt△AFD(HL),∴∠BAD=∠FAD=×120°=60°,∴∠FAD+∠AFE=60°+120°=180°,∴AD∥EF,∵G、I分别为AF、DE中点,∴GI∥EF∥AD,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是a,即等边三角形QKM的边长的,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN=a,∵GF=AF=×a=a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ=GF=a,同理IN=a,∴GI=a+a+a=a,即第二个等边三角形的边长是a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是×a;同理第第三个等边三角形的边长是×a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是××a;同理第四个等边三角形的边长是××a,第四个正六边形的边长是×××a;第五个等边三角形的边长是×××a,第五个正六边形的边长是××××a;第六个等边三角形的边长是××××a,第六个正六边形的边长是×××××a,即第六个正六边形的边长是×a,故选A.11、C【分析】根据同底数幂的运算法则:同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;同底数幂没有相加和相减的公式,只有同类项才能相加减,逐一判定即可.【详解】A选项,,错误;B选项,,错误;C选项,,正确;D选项,,错误;故选:C.【点睛】此题主要考查同底数幂的混合运算,熟练掌握运算法则,即可解题.12、A【详解】解:如图连接CD、BD,∵CA=CD,BA=BD,
∴点C、点B在线段AD的垂直平分线上,
∴直线BC是线段AD的垂直平分线,
故A正确.
B、错误.CA不一定平分∠BDA.
C、错误.应该是S△ABC=•BC•AH.
D、错误.根据条件AB不一定等于AD.
故选A.二、填空题(每题4分,共24分)13、13【分析】求出方程组的解得到x与y的值,代入原式利用题中的新定义计算即可.【详解】解:方程组,①+②×1得:9x=108,解得:x=2,把x=2代入②得:y=5,则x※y=2※5==13,故答案为13【点睛】本题考查了解一元二次方程组,利用了消元的思想,消元的方法有:代入消元与加减消元法.14、(﹣1,﹣2)【解析】试题分析:根据“关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变”解答即可.解:∵A(1,﹣2)与点B关于y轴对称,∴点B的坐标是(﹣1,﹣2).故答案为(﹣1,﹣2)点评:本题考查了关于x轴、y轴对称的点的坐标,(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y).(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).15、【解析】根据待定系数法将点P(1,m)代入函数中,即可求得m,k的值;即可求得交点坐标,根据三角形的面积公式即可得出结论.【详解】∵正比例函数y=1x的图象与一次函数y=﹣3x+k的图象交于点P(1,m),∴把点P(1,m)代入得:,把①代入②得:m=1,k=5,∴点P(1,1),∴三角形的高就是1.∵y=﹣3x+5,∴A(0),∴OA,∴S△AOP.故答案为:.【点睛】本题考查了待定系数法求解析式;解题的关键是根据正比例函数和一次函数的图象性质进行计算即可.16、55°【分析】这道题可以根据CD为斜边AB的中线得出CD=AD,由∠A=35°得出∠A=∠ACD=35°,则∠BCD=90°-35°=55°.【详解】如图,∵CD为斜边AB的中线∴CD=AD∵∠A=35°∴∠A=∠ACD=35°∵∠ACD+∠BCD=90°则∠BCD=90°-35°=55°故填:55°.【点睛】此题主要考查三角形内角度求解,解题的关键是熟知直角三角形的性质.17、﹣1【分析】根据条件可得m﹣2n=1,然后再把代数式m2﹣1mn+1n2﹣5变形为m2﹣1mn+1n2﹣5=(m﹣2n)2﹣5,再代入求值即可.【详解】解:∵m=2n+1,∴m﹣2n=1,∴m2﹣1mn+1n2﹣5=(m﹣2n)2﹣5=1﹣5=﹣1,故答案为﹣1.【点睛】此题主要考查了公式法分解因式,关键是正确把条件变形,然后再代入求值.18、6m【分析】根据三角形的面积公式,RT△ABC的面积等于△AOB、△AOC、△BOC三个三角形面积的和列式求出点O到三边的距离,然后乘以3即可.【详解】设点O到三边的距离为h,
则,
解得h=2m,
∴O到三条支路的管道总长为:3×2=6m.
故答案为:6m.【点睛】本题考查了角平分线上的点到两边的距离相等的性质,以及勾股定理,三角形的面积的不同表示,根据三角形的面积列式求出点O到三边的距离是解题的关键.三、解答题(共78分)19、(1),;(2)【分析】(1)利用完全平方公式整理,再根据非负数的性质列方程求解即可;
(2)利用勾股定理逆定理判断出△ABC是直角三角形,再根据直角三角形的面积等于两直角边的乘积的一半列式计算即可得解.【详解】解:(1)代数式整理得:∴,;(2)∵,∴,∴△ABC是直角三角形,,∴△ABC的面积.【点睛】本题考查了二次根式的应用和非负数的性质:几个非负数的和为0时,这几个非负数都为0,还考查了勾股定理逆定理.20、7或1.【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围;又知道第三边长为奇数,就可以知道第三边的长度.【详解】解:根据三角形的三边关系,得8-3<BC<3+8,即5<BC<2.又BC长是奇数,则BC=7或1.故答案为7或1.21、(1)67.5;(1)证明见解析;(3)DE-BE=1.【分析】(1)先根据等腰三角形的性质,得出∠A=∠B=45°=∠CDE,再根据BC=BD,可得出∠BDC的度数,然后可得出∠BDE的度数,最后根据三角形外角的性质可得出∠DEC的度数;(1)先根据条件得出∠ACD=∠BDE,BD=AC,再根据ASA判定△ADC≌△BED,即可得到CD=DE;
(3)先根据条件得出∠DCB=∠CDE,进而得到CE=DE,再在DE上取点F,使得FD=BE,进而判定△CDF≌△DBE(SAS),得出CF=DE=CE,再根据CH⊥EF,运用三线合一即可得到FH=HE,最后得出CE-BE=DE-DF=EF=1HE,即可得出结论.【详解】(1)解:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°=∠CDE,又BC=BD,∴∠BDC=∠BCD=(180°-∠B)=67.5°,∴∠BDE=∠BDC-∠CDE=67.5°-45°=11.5°,∴∠DEC=∠B+∠BDE=67.5°;故答案为:67.5;(1)证明:∵AC=BC,∠CDE=∠A,
∴∠A=∠B=∠CDE,
∵∠CDB=∠A+∠ACD=∠CDE+∠BDE,
∴∠ACD=∠BDE,
又∵BC=BD,
∴BD=AC,
在△ADC和△BED中,,∴△ADC≌△BED(ASA),
∴CD=DE;(3)解:∵CD=BD,
∴∠B=∠DCB,
由(1)知:∠CDE=∠B,
∴∠DCB=∠CDE,
∴CE=DE,
如图,在DE上取点F,使得FD=BE,
在△CDF和△DBE中,,∴△CDF≌△DBE(SAS),
∴CF=DE=CE,
又∵CH⊥EF,
∴FH=HE,∴DE-BE=DE-DF=EF=1HE=1.【点睛】本题主要考查了全等三角形的判定与性质,以及等腰三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形以及等腰三角形.22、(1);(2).【分析】(1)先运用乘法分配律,二次根式分母有理化计算,再化为最简二次根式即可;(2)将二次根式分母有理化,再化为最简二次根式,负数的立方根是负数,任何非零数的0次幂为1,负指数幂即先求其倒数,据此解题.【详解】(1).(2).【点睛】本题考查二次根式的混合运算、负指数幂、零指数幂的运算等知识,是重要考点,难度较易,掌握相关知识是解题关键.23、(1)周长为,面积为;(2)【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得CE=DE=AB,即可求出周长,作底边CD上的高EH,利用勾股定理求出高,即可求面积;(2)设∠ECB=∠EBC=,则,利用∠DEA=2∠DBE可推出∠CED=30°,作CE边上的高DM,利用30°所对的直角边是斜边的一半可求出高,再根据三角形面积公式求解.【详解】(1)∵,,为中点∴CE=DE=AB=3∴△CDE的周长=CE+DE+CD=3+3+2=8如图,作EH⊥CD∵CE=DE∴CH=CD=1∴S△CDE=(2)∵CE=DE=AB,E为AB中点∴CE=BE,DE=BE,∴∠ECB=∠EBC,∠EBD=∠EDB设∠ECB=∠EBC=,则∠CEA=2∠EBC=,∴∠DEA=2∠EBD=∴∠CED=∠DEA-∠CEA=如图,过D点作DM⊥CE于点M,由(1)可知在Rt△DEM中,DE=3,∴DM=DE=∴【点睛】本题考查了直角三角形斜边上的中线性质,等腰三角形的性质,以及勾股定理,熟练掌握直角三角形斜边上的中线等于斜边的一半与等腰三角形三线合一的性质,是解题的关键.24、(1)往左平移个单位;(2)存在,往左平移个单位.【分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学物理电子教案磁场对电流的作用
- C语言程序设计(教案)
- 《丛林故事》选择题(含答案)
- 生物工程实习协议
- 商业综合体弱电布线合同范本
- 网络文学积分管理制度
- 物业管理公司员工聘用协议
- 廉政合同文件
- 养殖场养殖产品志愿服务合同
- 乳制品配送货车司机劳动合同
- 《深海》中的色彩叙事与镜像阐释
- 2023年中考英语备考让步状语从句练习题(附答案)
- 柔性生产线设计
- 物业项目交接计划方案
- 汽车维修工时定额核定方法编制说明
- 辛弃疾词《青玉案·元夕》
- T-HNKCSJ 002-2023 河南省地源热泵系统工程技术规范
- 《无人机驾驶基础》课件-项目四 无人机结构及性能
- XX公司安全生产风险管控与隐患排查双重预防管理体系手册
- 心血管内科试题库+答案
- 农产品电子商务智慧树知到期末考试答案章节答案2024年浙江农林大学
评论
0/150
提交评论