版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省监利县八年级数学第一学期期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.若是完全平方式,则m的值等于()A.1或5 B.5 C.7 D.7或2.化简的结果是()A.35 B. C. D.3.已知一个等腰三角形的两边长是3cm和7cm,则它的周长为()A.13cm B.17cm C.13或17cm D.10cm4.若,则a与4的大小关系是()A.a=4 B.a>4 C.a≤4 D.a≥45.在中,若是的正比例函数,则值为A.1 B. C. D.无法确定6.如图,已知BF=CE,∠B=∠E,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是(
)A.AB=DE B.AC∥DF C.∠A=∠D D.AC=DF7.如图,△CEF中,∠E=70°,∠F=50°,且AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是()A.40° B.45° C.50° D.60°8.一个等腰三角形的两边长分别为3和5,则它的周长为()A.11 B.12 C.13 D.11或139.若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3 D.x=310.已知x﹣y=﹣2,xy=3,则x2y﹣xy2的值为()A.2 B.﹣6 C.5 D.﹣311.一项工程,甲单独做需要m天完成,乙单独做需要n天完成,则甲、乙合作完成工程需要的天数为()A.m+n B. C. D.12.某手机公司接到生产万部手机的订单,为尽快交货.…,求每月实际生产手机多少万部?在这道题目中,若设每月实际生产手机万部,可得方程,则题目中“…”处省略的条件应是()A.实际每月生产能力比原计划提高了,结果延期个月完成B.实际每月生产能力比原计划提高了,结果提前个月完成C.实际每月生产能力比原计划降低了,结果延期个月完成D.实际每月生产能力比原计划降低了,结果提前个月完成二、填空题(每题4分,共24分)13.已知:△ABC中,∠B、∠C的角平分线相交于点D,过D作EF//BC交AB于点E,交AC于点F.求证:BE+CF=EF.14.如图,在△ABC中∠ABC和∠ACB平分线交于点O,过点O作OD⊥BC于点D,△ABC的周长为21,OD=4,则△ABC的面积是_____.15.如图,在△ABC中,∠ABC=∠ACB,AB的垂直平分线交AC于点M,交AB于点N.连接MB,若AB=8,△MBC的周长是14,则BC的长为____.16.3.145精确到百分位的近似数是____.17.如图,已知,则_________.18.因式分解:.三、解答题(共78分)19.(8分)已知3m+n=1,且m≥n.(1)求m的取值范围(2)设y=3m+4n,求y的最大值20.(8分)(1)计算:①;②(2)解方程组:21.(8分)已知△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于E点.(1)求∠EDA的度数;(2)AB=10,AC=8,DE=3,求S△ABC.22.(10分)是等边三角形,作直线,点关于直线的对称点为,连接,直线交直线于点,连接.(1)如图①,求证:;(提示:在BE上截取,连接.)(2)如图②、图③,请直接写出线段,,之间的数量关系,不需要证明;(3)在(1)、(2)的条件下,若,则__________.23.(10分)如图所示,在中,,D是AB边上一点.(1)通过度量AB.CD,DB的长度,写出2AB与的大小关系.(2)试用你所学的知识来说明这个不等关系是成立的.24.(10分)(1)计算与化简:①②(2)解方程(3)因式分解25.(12分)某服装厂接到一份加工件校服的订单.在实际生产之前,接到学校要求需提前供货.该服装厂决定提高加工效率,实际每天加工的件数是原计划的倍,结果提前天完工,求原计划每天加工校服的件数.26.如图,等边△ABC的边长为12cm,点P、Q分别是边BC、CA上的动点,点P、Q分别从顶点B、C同时出发,且它们的速度都为3cm/s.(1)如图1,连接PQ,求经过多少秒后,△PCQ是直角三角形;(2)如图2,连接AP、BQ交于点M,在点P、Q运动的过程中,∠AMQ的大小是否变化?若变化,请说明理由;若不变,请求出它的度数.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据完全平方公式,首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍.【详解】解:∵多项式是完全平方式,∴,∴解得:m=7或-1故选:D.【点睛】此题主要查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.2、B【分析】直接利用二次根式的性质化简求出答案.【详解】解:.故选:B.【点睛】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.3、B【详解】由题意得:三角形的三边可能为3、3、7或3、7、7,然后根据三角形的三边关系可知只能是3、7、7,∴周长为3+7+7=17cm.故选B.4、D【分析】根据二次根式的性质可得a-4≥0,即可解答.【详解】解:由题意可知:a﹣4≥0,∴a≥4,故答案为D.【点睛】本题考查了二次根式的性质,掌握二次根式的非负性是解答本题的关键.5、A【分析】先根据正比例函数的定义列出关于的方程组,求出的值即可.【详解】函数是正比例函数,,解得,故选.【点睛】本题考查的是正比例函数的定义,正确把握“形如的函数叫正比例函数”是解题的关键.6、D【分析】根据全等三角形的判定定理分别进行分析即可.【详解】A.∵BF=CE,∴BF-CF=CE-CF,即BC=EF.∵∠B=∠E,AB=DE,∴∆ABC≌∆DEF(SAS),故A不符合题意.B.∵AC∥DF,∴∠ACE=∠DFC,∴∠ACB=∠DFE(等角的补角相等)∵BF=CE,∠B=∠E,∴BF-CF=CE-CF,即BC=EF,∴∆ABC≌∆DEF(ASA),故B不符合题意.C.∵BF=CE,∴BF-CF=CE-CF,即BC=EF.而∠A=∠D,∠B=∠E,∴∆ABC≌∆DEF(AAS),故C不符合题意.D.∵BF=CE,∴BF-CF=CE-CF,即BC=EF,而AC=DF,∠B=∠E,三角形中,有两边及其中一边的对角对应相等,不能判断两个三角形全等,故D符合题意.故选D.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7、D【分析】连接AC并延长交EF于点M.由平行线的性质得,,再由等量代换得,先求出即可求出.【详解】连接AC并延长交EF于点M.∵,∴,∵,∴,∴,∵,∴,故选D.【点睛】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.8、D【分析】根据等腰三角形的性质分两种情况讨论可得.【详解】①若等腰三角形的腰长为3,底边长为5,∵3+3=6>5,∴能组成三角形,∴它的周长是:3+3+5=11;②若等腰三角形的腰长为5,底边长为3,∵5+3=8>5,∴能组成三角形,∴它的周长是:5+5+3=1,综上所述,它的周长是:11或1.故选D.【点睛】此题考查了等腰三角形的性质与三角形三边关系.此题难度不大,解题的关键是注意分类讨论思想的应用,小心别漏解.9、C【解析】试题分析:要使有意义,则x-3≠0,即x≠3,故答案选C.考点:分式有意义的条件.10、B【分析】先题提公因式xy,再用公式法因式分解,最后代入计算即可.【详解】解:x2y﹣xy2=xy(x﹣y)=3×(﹣2)=﹣6,故答案为B.【点睛】本题考查了因式分解,掌握先提取公因式、再运用公式法的解答思路是解答本题的关键.11、C【分析】设总工程量为1,根据甲单独做需要m天完成,乙单独做需要n天完成,可以求出甲乙每天的工作效率,从而可以得到甲乙合作需要的天数。【详解】设总工程量为1,则甲每天可完成,乙每天可完成,所以甲乙合作每天的工作效率为所以甲、乙合作完成工程需要的天数为故答案选C【点睛】本题考查的是分式应用题,能够根据题意求出甲乙的工作效率是解题的关键。12、B【分析】由代表的含义找出代表的含义,再分析所列方程选用的等量关系,即可找出结论.【详解】设每月实际生产手机万部,则即表示:实际每月生产能力比原计划提高了,∵方程,即,其中表示原计划生产所需时间,表示实际生产所需时间,∴原方程所选用的等量关系为:实际生产比原计划提前个月完成,
即实际每月生产能力比原计划提高了,结果提前个月完成.
故选:B.【点睛】本题考查了分式方程的应用,根据所列分式方程,找出选用的等量关系是解题的关键.二、填空题(每题4分,共24分)13、证明见解析【详解】试题分析:根据角平分线定义和平行线性质求出∠EDB=∠EBD,推出DE=BE,同理得出CF=DF,即可求出答案.试题解析:∵EF∥BC,∴∠EDB=∠DBC,∵BD平分∠ABC,∴∠EBD=∠DBC,∴∠EBD=∠EDB,∴BE=ED,同理CF=DF,∴BE+CF=ED+DF=EF.考点:①等腰三角形的判定与性质;②平行线的性质.14、1【分析】作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质求出OE=OD=4和OF=OD=4,根据三角形面积公式计算即可.【详解】解:作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB是∠ABC的平分线,OD⊥BC,OE⊥AB,∴OE=OD=4,同理OF=OD=4,△ABC的面积=×AB×4+×AC×4+×BC×4=1.故答案为:1.【点睛】本题主要考查角平分线的性质,解题的关键是掌握角的平分线上的点到角的两边的距离相等.15、1【解析】根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出△MBC的周长=AC+BC,再代入数据进行计算即可得解.【详解】∵M、N是AB的垂直平分线∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC,∵AB=8,△MBC的周长是14,∴BC=14-8=1.故答案为:1.【点睛】线段垂直平分线的性质,等腰三角形的性质.16、3.1.【分析】根据近似数的精确度求解.3.145精确到百分位就是精确到数字4这一位,后一位数字5四舍五入即可.【详解】解:3.145≈3.1(精确到百分位).
故答案为3.1.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.17、45°【分析】根据三角形外角的性质得出∠ACD=∠2+∠B,再利用即可求出∠DCE的度数.【详解】∵∠ACD=∠2+∠B=∠1+∠DCE,∴,故答案为:45°.【点睛】此题考查三角形的外角性质,三角形的外角等于与它不相邻的两个内角的和,熟记性质并熟练运用是解题的关键.18、【详解】解:=;故答案为三、解答题(共78分)19、(1)(2)【分析】(1)把n用m表示,再代入m≥n即可求解;(2)先表示为y关于m的函数,再根据一次函数的性质即可求解.【详解】(1)∵3m+n=1∴n=-3m+1∵m≥n∴m≥-3m+1解得(2)y=3m+4n=3m+4(-3m+1)=-9m+4∵-9<0,∴y随m的增大而减小,∴当m=时,y的最大值为-9×+4=【点睛】此题主要考查一次函数与不等式,解题的关键是熟知一次函数的性质及不等式的求解.20、(1)①-2;②;(2)【分析】(1)根据二次根式的运算法则即可求解;(2)根据加减消元法即可求解.【详解】(1)①===3-5=-2②==(2)解①×2得4x-2y=-8③③-②得3y=15解得y=5把y=5代入①得2x-5=-4解得x=∴原方程组的解为.【点睛】此题主要考查二次根式与方程组的求解,解题的关键是熟知其运算法则.21、(1)60°;(2)1.【解析】(1)先求出∠BAC=60°,再用AD是△ABC的角平分线求出∠BAD,再根据垂直,即可求解;(2)过D作DF⊥AC于F,三角形ABC的面积为三角形ABD和三角形ACD的和即可求解.【详解】解:(1)∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵AD是△ABC的角平分线,∴∠BAD=∠BAC=×60°=30°,∵DE⊥AB,∴∠DEA=90°,∴∠EDA=180°﹣∠BAD﹣∠DEA=180°﹣30°﹣90°=60°;(2)如图,过D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DF=DE=3,又∵AB=10,AC=8,∴S△ABC=×AB×DE+×AC×DF=×10×3+×8×3=1.【点睛】本题考查的是三角形,熟练掌握三角形的性质是解题的关键.22、(1)见解析;(2)图②中,CE+BE=AE,图③中,AE+BE=CE;(3)1.1或4.1【分析】(1)在BE上截取,连接,只要证明△AED≌△AFB,进而证出△AFE为等边三角形,得出CE+AE=BF+FE,即可解决问题;(2)图②中,CE+BE=AE,延长EB到F,使BF=CE,连接,只要证明△ACE≌△AFB,进而证出△AFE为等边三角形,得出CE+BE=BF+BE,即可解决问题;图③中,AE+BE=CE,在EC上截取CF=BE,连接,只要证明△AEB≌△AFC,进而证出△AFE为等边三角形,得出AE+BE=CF+EF,即可解决问题;(3)根据线段,,,BD之间的数量关系分别列式计算即可解决问题.【详解】(1)证明:在BE上截取,连接,
在等边△ABC中,
AC=AB,∠BAC=60°
由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,
设∠EAC=∠DAE=x.
∵AD=AC=AB,
∴∠D=∠ABD=(180°-∠BAC-2x)=60°-x,
∴∠AEB=60-x+x=60°.
∵AC=AB,AC=AD,∴AB=AD,∴∠ABF=∠ADE,∵,∴△ABF≌△ADE,∴AF=AE,BF=DE,∴△AFE为等边三角形,∴EF=AE,∵AP是CD的垂直平分线,∴CE=DE,∴CE=DE=BF,
∴CE+AE=BF+FE=BE;(2)图②中,CE+BE=AE,延长EB到F,使BF=CE,连接在等边△ABC中,
AC=AB,∠BAC=60°
由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,
∴AB=AD,CE=DE,∵AE=AE∴△ACE≌△ADE,∴∠ACE=∠ADE∵AB=AD,∴∠ABD=∠ADB∴∠ABF=∠ADE=∠ACE∵AB=AC,BF=CE,∴△ACE≌△ABF,∴AE=AF,∠BAF=∠CAE∵∠BAC=∠BAE+∠CAE=60°∴∠EAF=∠BAE+∠BAF=60°∴△AFE为等边三角形,∴EF=AE,∴AE=BE+BF=BE+CE,即CE+BE=AE;图③中,AE+BE=CE,在EC上截取CF=BE,连接,在等边△ABC中,
AC=AB,∠BAC=60°
由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,
∴AB=AD,CE=DE,∵AE=AE∴△ACE≌△ADE,∴∠ACE=∠ADE∵AB=AD,∴∠ABD=∠ADB∴∠ABD=∠ADE=∠ACE∵AB=AC,BE=CF,∴△ACF≌△ABE,∴AE=AF,∠BAE=∠CAF∵∠BAC=∠BAF+∠CAF=60°∴∠EAF=∠BAF+∠BAE=60°∴△AFE为等边三角形,∴EF=AE,∴CE=EF+CF=AE+BE,即AE+BE=CE;(3)在(1)的条件下,若,则AE=3,∵CE+AE=BE,∴BE-CE=3,∵BD=BE+ED=BE+CE=6,∴CE=1.1;在(2)的条件下,若,则AE=3,因为图②中,CE+BE=AE,而BD=BE-DE=BE-CE,所以BD不可能等于2AE;图③中,若,则AE=3,∵AE+BE=CE,∴CE-BE=3,∵BD=BE+ED=BE+CE=6,∴CE=4.1.即CE=1.1或4.1.【点睛】本题考查几何变换,等边三角形的性质,线段垂直平分线的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.23、(1),(2)详见解析.【分析】(1)通过度量AB、DC、DB的长度,可得;(2)在中,根据三角形两边之和大于第三边得出,在两边同时加上DB,化简得到,再根据即可得证.【详解】(1).(2)在中,∵,∴,即.又∵,∴.【点睛】本题考查了三角形三边关系应用,熟练掌握三角形三边之和大于第三边,三边之差小于第三边是解题的关键.24、(1)①;②;(2);(3)【分析】(1)①分别进行负整数指数幂、零指数幂等运算,然后合并;②先计算积的乘方,再计算单项式除以单项式即可;(2)方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(3)先提公因式(),再利用平方差公式继续分解即可.【详解】(1)①;②;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论