版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省长沙市雅实、北雅、长雅三校数学八上期末达标测试试题试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列哪一组数是勾股数()A.9,12,13 B.8,15,17 C.,3, D.12,18,222.如图,在Rt△ACB中,∠C=90°,BE平分∠CBA交AC于点E,过E作ED⊥AB于D点,当∠A为()时,ED恰为AB的中垂线.A.15° B.20° C.30° D.25°3.在和中,①,②,③,④,⑤,⑥,则下列各组条件中使和全等的是()A.④⑤⑥ B.①②⑥ C.①③⑤ D.②⑤⑥4.若a+b=5,则代数式(﹣a)÷()的值为()A.5 B.﹣5 C.﹣ D.5.如果m是任意实数,则点一定不在A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,在中,,的垂直平分线交于点,连接,若的周长为17,则的长为()A.6 B.7 C.8 D.97.如图,在平面直角坐标系中点A、B、C的坐标分别为(0,1),(3,1),(4,3),在下列选项的E点坐标中,不能使△ABE和△ABC全等是()A.(4,﹣1) B.(﹣1,3) C.(﹣1,﹣1) D.(1,3)8.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC′=()A.10 B.5 C.4 D.39.某校对1200名女生的身高进行了测量,身高在,这一小组的频率为,则该组的人数为()A.150人 B.300人 C.600人 D.900人10.下列选项中,可以用来证明命题“若,则”是假命题的反例的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,直线y=﹣x+3与坐标轴分别交于点A、B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为_____.12.若,则__________.13.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=_______14.如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示,设点B所表示的数为m,则的值为______.15.多项式因式分解为_________16.如图,把一张三角形纸片(△ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E分别在AB和AC上,DE∥BC,若∠B=75°,则∠BDF的度数为_____.17.如果一个三角形的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,那么这个三角形一定是______.18.如图,点在同一直线上,平分,,若,则__________(用关于的代数式表示).三、解答题(共66分)19.(10分)在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB=OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.20.(6分)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=1.21.(6分)已知:如图,∠ACD是△ABC的一个外角,CE、CF分别平分∠ACB、∠ACD,EF∥BC,分别交AC、CF于点H、F求证:EH=HF22.(8分)某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲、乙两队合作完成该工程需要多少天?23.(8分)如图,已知AB∥CD,AC平分∠DAB.求证:△ADC是等腰三角形.24.(8分)如图,,,.求证:.25.(10分)按要求完成下列作图,不要求写作法,只保留作图痕迹.(1)已知:线段AB,作出线段AB的垂直平分线MN.(2)已知:∠AOB,作出∠AOB的平分线OC.(3)已知:线段a和b,求作:等腰三角形,使等腰三角形的底边长为a,底边上的高的长为b.26.(10分)与是两块全等的含的三角板,按如图①所示拼在一起,与重合.(1)求证:四边形为平行四边形;(2)取中点,将绕点顺时针方向旋转到如图位置,直线与分别相交于两点,猜想长度的大小关系,并证明你的猜想;(3)在(2)的条件下,当旋转角为多少度时,四边形为菱形.并说明理由.
参考答案一、选择题(每小题3分,共30分)1、B【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A、∵92+122≠132,∴此选项不符合题意;B、∵152+82=172,∴此选项符合题意;C、∵和不是正整数,此选项不符合题意;D、∵122+182≠222,∴此选项不符合题意;故选:B.【点睛】此题考查的是勾股数的判断,掌握勾股数的定义是解决此题的关键.2、C【分析】当∠A=30°时,根据直角三角形的两个锐角互余,即可求出∠CBA,然后根据角平分线的定义即可求出∠ABE,再根据等角对等边可得EB=EA,最后根据三线合一即可得出结论.【详解】解:当∠A为30°时,ED恰为AB的中垂线,理由如下∵∠C=90°,∠A=30°∴∠CBA=90°-∠A=60°∵BE平分∠CBA∴∠ABE=∠CBA=30°∴∠ABE=∠A∴EB=EA∵ED⊥AB∴ED恰为AB的中垂线故选C.【点睛】此题考查的是直角三角形的性质和等腰三角形的判定及性质,掌握直角三角形的两个锐角互余、等角对等边和三线合一是解决此题的关键.3、D【解析】根据全等三角形的判定方法对各选项分别进行判断.【详解】A.由④⑤⑥不能判定△ABC≌△A′B′C′;B.由①②⑥不能判定△ABC≌△A′B′C′;C.由①③⑤,不能判定△ABC≌△A′B′C′;D.由②⑤⑥,可根据“ASA”判定△ABC≌△A′B′C′.故选:D.【点睛】考查全等三角形的判定定理,三角形全等的判定定理有:SSS,SAS,ASA,AAS,HL.4、B【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.【详解】∵a+b=5,∴原式故选:B.【点睛】考查分式的化简求值,掌握减法法则以及除法法师是解题的关键,注意整体代入法在解题中的应用.5、D【分析】求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.【详解】∵,∴点P的纵坐标一定大于横坐标..∵第四象限的点的横坐标是正数,纵坐标是负数,∴第四象限的点的横坐标一定大于纵坐标.∴点P一定不在第四象限.故选D.6、B【分析】根据线段垂直平分线的性质可得AD=BD,AB=2AE,把△BCD的周长转化为AC、BC的和,然后代入数据进行计算即可得解.【详解】∵DE是AB的垂直平分线,
∴AD=BD,AB=2AE=10,
∵△BCD的周长=BD+CD+BC=AD+CD+BC=AC+BC=11,
∵AB=AC=10,
∴BC=11-10=1.
故选:B.【点睛】此题考查线段垂直平分线的性质.此题比较简单,解题的关键是掌握垂直平分线上任意一点,到线段两端点的距离相等定理的应用.7、D【分析】因为△ABE与△ABC有一条公共边AB,故本题应从点E在AB的上边、点E在AB的下边两种情况入手进行讨论,计算即可得出答案.【详解】△ABE与△ABC有一条公共边AB,当点E在AB的下边时,点E有两种情况①坐标是(4,﹣1);②坐标为(﹣1,﹣1);当点E在AB的上边时,坐标为(﹣1,3);点E的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).故选:D.【点睛】本题主要考查了全等三角形的判定,熟练掌握相关判定定理是解题关键.8、B【分析】先求出一个顶点从刻度“1”平移到刻度“10”的距离,再根据平移的性质得出答案.【详解】解:∵把三角板的斜边紧靠直尺平移,一个顶点从刻度“1”平移到刻度“10”,∴三角板向右平移了1个单位,∴顶点C平移的距离CC′=1.故选B.【点睛】本题考查了平移的性质,结合图形及性质定理是解题的关键.9、B【解析】根据频率=频数÷总数,得频数=总数×频率.【详解】解:根据题意,得
该组的人数为1200×0.25=300(人).
故选:B.【点睛】本题考查了频率的计算公式,理解公式.频率=能够灵活运用是关键.10、D【分析】根据题意,将选项中a的值代入命题中使得命题不成立即可判断原命题是假命题.【详解】选项中A,B,C都满足原命题,D选项与原命题的条件相符但与结论相悖,则是原命题作为假命题的反例,故选:D.【点睛】本题主要考查了命题的相关知识,熟练掌握真假命题的判断是解决本题的关键.二、填空题(每小题3分,共24分)11、2或4【解析】先求出点C坐标,然后分为两种情况,画出图形,根据等腰三角形的性质求出即可.【详解】∵由,得,∴C(2,2);如图1,当∠CQO=90°,CQ=OQ,∵C(2,2),∴OQ=CQ=2,∴t=2;如图2,当∠OCQ=90°,OC=CQ,过C作CM⊥OA于M,∵C(2,2),∴CM=OM=2,∴QM=OM=2,∴t=2+2=4,即t的值为2或4,故答案为2或4.【点睛】本题考查了一次函数与二元一次方程组、等腰直角三角形等知识,综合性比较强,熟练掌握相关知识、运用分类讨论以及数形结合思想是解题的关键.12、1【分析】将x+3y看作一个整体并求出其值,然后逆运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】∵x+3y-4=0,∴x+3y=4,∴3x•27y=3x•33y=3x+3y=34=1.故答案为:1.【点睛】本题考查了同底数幂相乘,底数不变指数相加,熟记性质并灵活运用是解题的关键,要注意整体思想的利用.13、30°【解析】由折叠的性质可知∠B=∠AEB,因为E点在AC的垂直平分线上,故EA=EC,可得∠EAC=∠C,根据外角的性质得∠B=∠AEB=∠EAC+∠C=2∠C,在Rt△ABC中,∠B+∠C=90°,由此可求∠C.解:由折叠的性质,得∠B=∠AEB,∵E点在AC的垂直平分线上,∴EA=EC,∴∠EAC=∠C,由外角的性质,可知∠B=∠AEB=∠EAC+∠C=2∠C,在Rt△ABC中,∠B+∠C=90°,即2∠C+∠C=90°,解得∠C=30°.故本题答案为:30°.本题考查了折叠的性质,线段垂直平分线的性质.关键是把条件集中到直角三角形中求解.14、【分析】由点向右直爬2个单位,即,据此即可得到.【详解】解:由题意,∵点A表示,∴点B表示,即,∴;故答案为:.【点睛】本题考查了实数与数轴的对应关系,理解向右移动是增大是关键.15、x(x-10)【分析】利用平方差公式分解因式再化简得出即可.【详解】解:故答案为:【点睛】此题主要考查了平方差公式分解因式,熟练应用平方差公式是解题关键.16、30°【分析】利用平行线的性质求出∠ADE=75°,再由折叠的性质推出∠ADE=∠EDF=75°即可解决问题.【详解】解:∵DE∥BC,∴∠ADE=∠B=75°,又∵∠ADE=∠EDF=75°,∴∠BDF=180°﹣75°﹣75°=30°,故答案为30°.【点睛】本题综合考查了平行线以及折叠的性质,熟练掌握两性质定理是解答关键.17、直角三角形【解析】由已知可得(a-3)2+(b-4)2+(c-5)2=0,求出a,b,c,再根据勾股定理逆定理可得.【详解】∵a2+b2+c2+50=6a+8b+10c
∴a2+b2+c2-6a-8b-10c+50=0
即a2-6a+9+b2-8b+16+c2-10c+25=0
∴(a-3)2+(b-4)2+(c-5)2=0
∴a=3,b=4,c=5
∵a2+b2=c2故答案为:直角三角形【点睛】掌握非负数性质和勾股定理逆定理.18、(90-α)【解析】根据∠,可以得到∠EBD,再根据BF平分∠EBD,CG∥BF,即可得到∠GCD,本题得以解决.【详解】∵∠EBA=,∠EBA+∠EBD=180,
∴∠EBD,
∵BF平分∠EBD,
∴∠FBD=∠EBD=(180)=90,
∵CG∥BF,
∴∠FBD=∠GCD,
∴∠GCD=90=,
故答案为:(90-).【点睛】本题考查平行线的性质、角平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.三、解答题(共66分)19、(1)y=x+6;(2)D(﹣,3),S△BCD=4;(3)存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0)【分析】(1)根据待定系数法可得直线l1的解析式;(2)如图1,过C作CH⊥x轴于H,求点E的坐标,利用C和E两点的坐标求直线l2的解析式,与直线l1列方程组可得点D的坐标,利用面积和可得△BCD的面积;(3)分四种情况:在x轴和y轴上,证明△DMQ≌△QNC(AAS),得DM=QN,QM=CN,设D(m,m+6)(m<0),表示点Q的坐标,根据OQ的长列方程可得m的值,从而得到结论.【详解】解:(1)y=k1x+6,当x=0时,y=6,∴OB=6,∵OB=OA,∴OA=2,∴A(﹣2,0),把A(﹣2,0)代入:y=k1x+6中得:﹣2k1+6=0,k1=,∴直线l1的解析式为:y=x+6;(2)如图1,过C作CH⊥x轴于H,∵C(,1),∴OH=,CH=1,Rt△ABO中,,∴AB=2OA,∴∠OBA=30°,∠OAB=60°,∵CD⊥AB,∴∠ADE=90°,∴∠AED=30°,∴EH=,∴OE=OH+EH=2,∴E(2,0),把E(2,0)和C(,1)代入y=k2x+b中得:,解得:,∴直线l2:y=x+2,∴F(0,2)即BF=6﹣2=4,则,解得,∴D(﹣,3),∴S△BCD=BF(xC﹣xD)=;(3)分四种情况:①当Q在y轴的正半轴上时,如图2,过D作DM⊥y轴于M,过C作CN⊥y轴于N,∵△QCD是以CD为底边的等腰直角三角形,∴∠CQD=90°,CQ=DQ,∴∠DMQ=∠CNQ=90°,∴∠MDQ=∠CQN,∴△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,﹣m+1),∴OQ=QN+ON=OM+QM,即﹣m+1=m+6+,,∴Q(0,2);②当Q在x轴的负半轴上时,如图3,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m+1,0),∴OQ=QN﹣ON=OM﹣QM,即m+6-=﹣m﹣1,m=5﹣4,∴Q(6﹣4,0);③当Q在x轴的负半轴上时,如图4,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m﹣1,0),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6﹣=﹣m+1,m=﹣4﹣5,∴Q(﹣4﹣6,0);④当Q在y轴的负半轴上时,如图5,过D作DM⊥y轴于M,过C作CN⊥y轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,m+1),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6+=﹣m﹣1,m=﹣2﹣1,∴Q(0,﹣2);综上,存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0).【点睛】本题是综合了一次函数的图象与性质,全等三角形的性质与判定,直角三角形与等腰直角三角形的性质等知识的分情况讨论动点动图问题,在熟练掌握知识的基础上,需要根据情况作出辅助线,或者作出符合题意的图象后分情况讨论.20、2x﹣2,-3【解析】解:原式=x2﹣2﹣x2+2x=2x﹣2.当x=3时,原式=2×3﹣2=﹣3.21、见解析【分析】由角平分线的定义可得∠BCE=∠ACE,∠ACF=∠DCF,由平行线的性质可得∠BCE=∠CEF,∠CFE=∠DCF,利用等量代换可得∠ACE=∠CEF,∠CFE=∠ACF,根据等角对等边即可求得EH=CH=HF,进而求得EH=HF.【详解】∵CE、CF分别平分∠ACB、∠ACD,∴∠BCE=∠ACE,∠ACF=∠DCF,∵EF∥BC,∴∠BCE=∠CEF,∠CFE=∠DCF,∴∠ACE=∠CEF,∠CFE=∠ACF,∴EH=CH,CH=HF,∴EH=HF.【点睛】本题考查了平行线的性质,等腰三角形的判定和性质,根据等角对等边求解是解题关键.22、(1)这项工程的规定时间是30天;(2)甲乙两队合作完成该工程需要18天.【分析】(1)设这项工程的规定时间是天,则甲队单独施工需要天完工,乙队单独施工需要天完工,依题意列方程即可解答;(2)求出甲、乙两队单独施工需要的时间,再根据题意列方程即可.【详解】(1)设这项工程的规定时间是天,则甲队单独施工需要天完工,乙队单独施工需要天完工,依题意,得:.解得:,经检验,是原方程的解,且符合题意.答:这项工程的规定时间是30天.(2)由(1)可知:甲队单独施工需要30天完工,乙队单独施工需要45天完工,(天),答:甲乙两队合作完成该工程需要18天.【点睛】本题考查分式方程的应用,理解题意,根据等量关系列出方程是解题的关键.23、证明见解析.【分析】由平行线的性质和角平分线定义求出∠DAC=∠DCA,即可得出结论.【详解】∵AB∥CD,∴∠BAC=∠DCA.∵AC平分∠DAB,∴∠BAC=∠DAC,∴∠DAC=∠DCA,∴△ADC是等腰三角形.【点睛】此题考查等腰三角形的判定,平行线的性质,熟练掌握等腰三角形的判定和平行线的性质是解题的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年三人股东权益合作范本
- 2024年有机化肥技术服务合同
- 武汉公司债务还款协议
- 运营资金借款协议书范本
- 馒头烘焙课程设计
- 基金交易服务合同
- 协商一致解除劳动合同协议书
- 商铺租赁合同指南
- 架空绝缘线能带负荷查询表
- 键式逐稿器课程设计
- 2023年温州鹿城区区属国企招聘选调笔试真题
- 拆除石笼护坡施工方案
- 小学数学《比的认识单元复习课》教学设计(课例)
- 影视培训网上课程设计
- 2024年小学体育工作计划范本(五篇)
- 管理经济学学习通超星期末考试答案章节答案2024年
- 9.2提高防护能力(课件)-2024-2025学年统编版道德与法治七年级上册
- 汽车修理业务受理程序、服务承诺、用户抱怨制度
- 建筑垃圾消纳处置场所建设可行性研究报告
- GB/T 44670-2024殡仪馆职工安全防护通用要求
- 期中高频易错卷(试题)-2024-2025学年数学五年级上册北师大版
评论
0/150
提交评论