版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省吉林市吉化九中学2025届数学八年级第一学期期末经典试题期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.三角形的三边长分别是a、b、c,下列各组数据中,能组成直角三角形的是()A.4,5,6 B.7,12,15 C.5,13,12 D.8,8,112.如图,在中,分别以点和点为圆心,大于的长为半径画弧,两弧相交于点,,连接,交于点,连接,若的周长为,,则的周长为()A. B. C. D.3.下列计算结果正确的是()A. B. C. D.4.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A. B.C. D.5.若,则的值为()A. B. C. D.6.中国科学院微电子研究所微电子设备与集成技术领域的专家殷华湘说,他的团队已经研发出纳米(米纳米)晶体管.将纳米换算成米用科学记数法表示为()A.米 B.米 C.米 D.米7.在下列各数中,无理数是()A. B. C. D.8.已知,则的值是()A.6 B.9 C. D.9.如图,BC=EC,∠BCE=∠DCA,要使△ABC≌△DEC,不能添加下列选项中的()A.∠A=∠D B.AC=DCC.AB=DE D.∠B=∠E10.某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A.1.95元 B.2.15元 C.2.25元 D.2.75元二、填空题(每小题3分,共24分)11.如图△ABC中,∠ABC、∠ACB的平分线相交于点O,若∠A=100°,则∠BOC=____o.12.某班的一个综合实践活动小组去甲、乙两个超市调查去年和今年“元旦”期间的销售情况,下面是调查后小明与其它两位同学进行交流的情景.小明说:“去年两超市销售额共为150万元,今年两超市销售额共为170万元”,小亮说:“甲超市销售额今年比去年增加10%小颖说:“乙超市销售额今年比去年增加20%根据他们的对话,得出今年甲超市销售额为_____万元13.若,则可取的值为__________.14.若,则=______15.在平面直角坐标系中,将点(-b,-a)称为点(a,b)的“关联点”(例如点(-2,-1)是点(1,2)的“关联点”).如果一个点和它的“关联点”在同一象限内,那么这一点在第_______象限.16.目前科学家发现一种新型病毒的直径为0.0000251米,用科学记数法表示该病毒的直径为米.17.分解因式:a3-a=18.分解因式x(x﹣2)+3(2﹣x)=_____.三、解答题(共66分)19.(10分)开展“创卫”活动,某校倡议学生利用双休日在“人民公园”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;(2)求抽查的学生劳动时间的众数、中位数;(3)电视台要从参加义务劳动的学生中随机抽取1名同学采访,抽到时参加义务劳动的时间为2小时的同学概率是多少?20.(6分)解下列分式方程(1)(2)21.(6分)数学课上有如下问题:如图,已知点C是线段AB上一点,分别以AC和BC为斜边在同侧作等腰直角△ACD和等腰直角△BCE,点P是线段AB上一个动点(不与A、B、C重合),连接PD,作∠DPQ=90°,PQ交直线CE于点Q.(1)如图1,点P在线段AC上,求证:PD=PQ;(2)如图2,点P在线段BC上,请根据题意补全图2,猜想线段PD、PQ的数量关系并证明你的结论.小明同学在解决问题(1)时,提出了这样的想法:如图3,先过点P作PF⊥AC交CD于点F,再证明△PDF≌△PQC……请你结合小明同学的想法,完成问题(1)(2)的解答过程.22.(8分)化简并求值:,其中,且均不为1.23.(8分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.24.(8分)如图,点,,,在一条直线上,,,,求证:.25.(10分)如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.(1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?26.(10分)在△ABC中,∠BAC=120°,AD平分∠BAC,且AD=AB,若∠EDF=60°,其两边分别交边AB,AC于点E,F.(1)求证:△ABD是等边三角形;(2)求证:BE=AF.
参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:A、42+52=16+25=41≠62,所以4、5、6不能组成直角三角形;B、72+122=49+144=193≠152,所以7、12、15不能组成直角三角形;C、52+122=25+144=169=132,所以5、12、13可以组成直角三角形;D、82+82=64+64=128≠112,所以8、8、11不能组成直角三角形;故选C.考点:勾股定理的逆定理.2、C【分析】本题主要涉及到了线段垂直平分线性质,代入题目相关数据,即可解题.【详解】解:在△ABC中,以点A和点B为圆心,大于二分之一AB的长为半径画弧,两弧相交于点M,N,则直线MN为AB的垂直平分线,则DA=DB,△ADC的周长由线段AC,AD,DC组成,△ABC的周长由线段AB,BC,CA组成而DA=DB,因此△ABC的周长为10+7=17.故选C.【点睛】本题考察线段垂直平分线的根本性质,解题时要注意数形结合,从题目本身引发思考,以此为解题思路.3、D【解析】根据幂的加减和幂的乘方计算法则判断即可.【详解】A.,该选项错误;B.,该选项错误;C.不是同类项不可合并,该选项错误;D.,该选项正确;故选D.【点睛】本题考查幂的加减和幂的乘方计算,关键在于熟练掌握基础运算方法.4、B【分析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,【详解】设学校购买文学类图书平均每本书的价格是x元,可得:故选B.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.5、A【解析】试题解析:设故选A.6、A【分析】本题根据科学记数法进行计算即可.【详解】因为科学记数法的标准形式是,因此纳米=.故答案选A.【点睛】本题主要考查了科学记数法,熟练掌握科学记数法是解题的关键.7、B【分析】根据无理数的定义进行判断即可.【详解】解:∵=2,=2,∴,,都是有理数,3π是无理数,故选B.【点睛】本题主要考查无理数的定义,无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.8、B【分析】根据题意,得到,然后根据同底数幂乘法的逆运算,代入计算,即可得到答案.【详解】解:∵,∴,∴;故选:B.【点睛】本题考查了同底数幂的逆运算,解题的关键是熟练掌握运算法则,正确得到.9、C【分析】根据全等三角形的判定条件进行分析即可;【详解】根据已知条件可得,即,∵BC=EC,∴已知三角形一角和角的一边,根据全等条件可得:可根据AAS证明,A正确;可根据SAS证明,B正确;不能证明,C故错误;根据ASA证明,D正确;故选:C.【点睛】本题主要考查了全等三角形的判定条件,根据已知条件进行准确分析是解题的关键.10、C【分析】根据加权平均数的定义列式计算可得.【详解】解:这天销售的矿泉水的平均单价是(元),故选C.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.二、填空题(每小题3分,共24分)11、1【分析】根据三角形内角和定理得,再根据角平分线的性质可得,最后根据三角形内角和定理即可求出∠BOC的度数.【详解】∵∠A=100°∴∵∠ABC、∠ACB的平分线相交于点O∴∴故答案为:1.【点睛】本题考查了角平分线相关的计算题,掌握三角形内角和定理、角平分线的性质是解题的关键.12、1【分析】设甲超市去年销售额为x万元,乙超市去年销售额为y万元,根据题意列出方程组求解后,再求出甲超市今年的销售额即可.【详解】解:设甲超市去年销售额为x万元,乙超市去年销售额为y万元,根据题意得解得所以今年甲超市销售额为(万元).故答案为:1.【点睛】本题主要考查二元一次方程组的应用,根据题意列出方程组是解题的关键.13、或2【分析】直接利用零指数幂的性质以及有理数的乘方运算法则得出答案.【详解】解:∵,
∴当1-3x=2时,x=,原式=()2=1,
当x=2时,原式=11=1.
故答案为:或2.【点睛】本题考查零指数幂的性质以及有理数的乘方运算,正确掌握运算法则是解题关键.14、【解析】根据0指数幂的意义可得2x+1=0,解方程即可求得答案.【详解】因为:,所以2x+1=0,所以x=,故答案为:.【点睛】本题考查了0指数幂运算的应用,熟练掌握是解题的关键.15、二、四.【解析】试题解析:根据关联点的特征可知:如果一个点在第一象限,它的关联点在第三象限.如果一个点在第二象限,它的关联点在第二象限.如果一个点在第三象限,它的关联点在第一象限.如果一个点在第四象限,它的关联点在第四象限.故答案为二,四.16、【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点.【详解】0.0000211米=2.11×10﹣1米.故答案为:2.11×10﹣1.【点睛】本题考查了科学记数法的表示方法,关键是注意n是负数.17、【解析】a3-a=a(a2-1)=18、(x﹣2)(x﹣3)【解析】原式提取公因式即可得到结果.【详解】原式=x(x−2)−3(x−2)=(x−2)(x−3),故答案为(x−2)(x−3)【点睛】考查因式分解,掌握提取公因式法是解题的关键.三、解答题(共66分)19、(1)见解析;(2)众数为1.5小时、中位数为1.5小时;(3)【分析】(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数,进而可将条形统计图补充完整;(2)根据统计图中的数据确定出学生劳动时间的众数与中位数即可;(3)直接根据概率公式求解即可.【详解】解:(1)根据题意得:30÷30%=100(人),∴学生劳动时间为“1.5小时”的人数为100-(12+30+18)=40(人),补全统计图,如图所示:(2)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时.(3)抽到是参加义务劳动的时间为2小时的同学概率=.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了众数,扇形统计图,条形统计图,以及中位数,弄清题中的数据是解本题的关键.20、(1)无解.(2)x=【解析】各分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)去分母得,2(x+1)-3(x-1)=x+3,解方程,得,x=1,经检验,x=1是原方程的增根,原方程无解.(2)去分母得,2x=3-2(2x-2)解方程得,x=,经检验,x=是原方程的解.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21、(1)见解析;(2)见解析【分析】(1)先过点P作PF⊥AC交CD于点F,再证明△PDF≌△PQC即可得到结论;(2)过点P作PF⊥BC交CE的延长线于点F,再证明△PDC≌△PQF即可得到结论.【详解】(1)证明:过点P作PF⊥AC交CD于点F,如图,∵△ACD和△BCE均为等腰直角三角形,∴∠ACD=∠BCE=45°,∴∠PFC=45°,PF=PC∴∠PFD=135°,∠PCQ=180°-45°=135°,∴∠PFD=∠PCQ∵DP⊥PQ,PF⊥PC∴∠DPF+∠FPQ=∠CPQ+∠QPF=90°,∴∠DPF=∠QPC,在△DPF和△QPC中,∴△DPF≌△QPC∴PD=PQ;(2)过点P作PF⊥BC交CE的延长线于点F,如图,方法同(1)可证明:△PDC≌△PQF,∴∴PD=PQ.【点睛】此题主要考查了全等三角形的判定与性质,解题的关键是作辅助线构造全等三角形.22、,【分析】先化简分式,再把代入求值即可.【详解】解:.当,且均不为1时,原式=.【点睛】本题考查的是分式的化简求值,掌握分式的混合运算是关键.23、(1)证明见解析;(2)1.【解析】试题分析:(1)根据△AEO和△CFO全等来进行说明;(2)连接OB,得出△BOF和△BOE全等,然后求出∠BAC的度数,根据∠BAC的正切值求出AB的长度.试题解析:(1)∵四边形ABCD是矩形,∴AB∥CD∴∠OAE=∠OCF∠OEA=∠OFC∵AE=CF∴△AEO≌△CFO∴OE=OF(2)连接BO∵OE=OFBE=BF∴BO⊥EF且∠EBO=∠FBO∴∠BOF=90°∵四边形ABCD是矩形∴∠BCF=90°∵∠BEF=2∠BAC∠BEF=∠BAC+∠EOA∴∠BAC=∠EOAAE=OE∵AE=CFOE=OF∴OF=CF又∵BF=BF∴Rt△BOF≌Rt△BCF∴∠OBF=∠CBF∴∠CBF=∠FBO=∠OBE∵∠ABC=90°∠OBE=30°∴∠BEO=10°∠BAC=30°∵tan∠BAC=∴tan30°=即∴AB=1.考点:三角形全等的证明、锐角三角函数的应用.24、见解析【分析】根据已知条件,证明三角形全等,可得,由平行的判定,内错角相等,两直线平行即可得.【详解】在和中,,.【点睛】考查了全等三角形的判定和性质以及平行的判定,熟记平行的判定定理是解题的关键.25、(1)①△BPD与△CQP全等,理由见解析;②当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等;(2)经过90s点P与点Q第一次相遇在线段AB上相遇.【分析】(1)①由“SAS”可证△BPD≌△CQP;
②由全等三角形的性质可得BP=PC=BC=5cm,BD=CQ=6cm,可求解;
(2)设经过x秒,点P与点Q第一次相遇,列出方程可求解.【详解】解:(1)①△BPD与△CQP全等,理由如下:∵AB=AC=18cm,AD=2BD,∴AD=12cm,BD=6cm,∠B=∠C,∵经过2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 桥梁建设中安全文明施工及环保方案
- 商业写字楼日常保洁方案
- 机场消防设施改造施工方案
- 2024年升级:网络安全防护服务合同
- 本科采矿学课程设计
- 本店服装半价处理方案
- 木质防腐施工方案
- 2024至2030年沥青项目投资价值分析报告
- 木井字架施工方案
- 2024年农业社会化服务体系构建合同
- 《做个加法表》名师课件
- 个人与公司签订的销售提成协议
- 危险性较大的分部分项安全管理核查表
- 2024年纪检监察综合业务知识题库含答案(研优卷)
- 第8课《用制度体系保证人民当家做作主》第2框《我国的基本政治制度》课件 2023-2024学年 中职高教版(2023)中国特色社会主义
- 手术切口感染PDCA案例
- 小学大思政课实施方案设计
- 2024年入团积极分子结业考试试题
- 供应室消防应急预案演练
- 校运会裁判员培训
- 潮湿相关性皮炎的护理
评论
0/150
提交评论