2025届江苏省淮安市涟水县数学八上期末质量跟踪监视模拟试题含解析_第1页
2025届江苏省淮安市涟水县数学八上期末质量跟踪监视模拟试题含解析_第2页
2025届江苏省淮安市涟水县数学八上期末质量跟踪监视模拟试题含解析_第3页
2025届江苏省淮安市涟水县数学八上期末质量跟踪监视模拟试题含解析_第4页
2025届江苏省淮安市涟水县数学八上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省淮安市涟水县数学八上期末质量跟踪监视模拟试题题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列计算正确的是()A.a2+a3=a5 B.(a2)3=a6 C.a6÷a2=a3 D.2a×3a=6a2.对称现象无处不在,请你观察下面的四个图形,它们体现了中华民族的传统文化,其中,可以看作是轴对称图形的有()A.1个 B.2个 C.3个 D.4个3.如图,正方形中,,点在边上,且,将沿对折至,延长交边于点,连接,,则下列结论:①≌;②;③;④,其中正确的个数是()个A.1 B.2 C.3 D.44.化简的结果是()A. B. C. D.5.若直角三角形两直角边长分别为5和12,则斜边的长为()A.17 B.7 C.14 D.136.如图所示,在中,,,、分别是其角平分线和中线,过点作于点,交于点,连接,则线段的长为()A. B.1 C. D.77.下列各式由左边到右边的变形中,是分解因式的是A. B.C. D.8.若中刚好有,则称此三角形为“可爱三角形”,并且称作“可爱角”.现有一个“可爱且等腰的三角形”,那么聪明的同学们知道这个三角形的“可爱角”应该是().A.或 B.或 C.或 D.或或9.如图,已知AC平分∠DAB,CE⊥AB于E,AB=AD+2BE,则下列结论:①AB+AD=2AE;②∠DAB+∠DCB=180°;③CD=CB;④S△ACE﹣2S△BCE=S△ADC;其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个10.如图,AD是△ABC的高,BE是△ABC的角平分线,BE,AD相交于点F,已知∠BAD=42°,则∠BFD=()A.45° B.54° C.56° D.66°11.若是完全平方式,则实数的值为()A. B. C. D.12.在下列各原命题中,其逆命题为假命题的是()A.直角三角形的两个锐角互余B.直角三角形两条直角边的平方和等于斜边的平方C.等腰三角形两个底角相等D.同角的余角相等二、填空题(每题4分,共24分)13.如图于,,则的长度为____________14.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为_______度.15.举反例说明下面的命题是假命题,命题:若,则且,反例:__________16.已知xy=3,那么的值为______.17.二元一次方程组的解为_________.18.如图,∠2=∠3=65°,要使直线a∥b,则∠1=_____度.三、解答题(共78分)19.(8分)(1)问题原型:如图①,在锐角中,于点,在上取点,使,连结.求证:.(2)问题拓展:如图②,在问题原型的条件下,为的中点,连结并延长至点,使,连结.判断线段与的数量关系,并说明理由.20.(8分)在平面直角坐标系中,有点,.(1)若线段轴,求点、的坐标;(2)当点到轴的距离与点到轴的距离相等时,求点所在的象限.21.(8分)如图,在△ABC中,AD,AF分别为△ABC的中线和高,BE为△ABD的角平分线.(1)若∠BED=40°,∠BAD=25°,求∠BAF的大小;(2)若△ABC的面积为40,BD=5,求AF的长.22.(10分)现有3张边长为的正方形纸片(类),5张边长为的矩形纸片(类),5张边长为的正方形纸片(类).我们知道:多项式乘法的结果可以利用图形的面积表示.例如:就能用图①或图②的面积表示.(1)请你写出图③所表示的一个等式:_______________;(2)如果要拼一个长为,宽为的长方形,则需要类纸片_____张,需要类纸片_____张,需要类纸片_____张;(3)从这13张纸片中取出若干张,每类纸片至少取出一张,把取出的这些纸片拼成一个正方形(按原纸张进行无缝隙,无重叠拼接),则拼成的正方形的边长最长可以是_______(用含的式子表示).23.(10分)解下列分式方程:(1)(2).24.(10分)某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.25.(12分)在甲村至乙村的公路旁有一块山地正在开发,现有一处需要爆破.已知点与公路上的停靠站的距离为米,与公路上另一停靠站的距离为米,且,如图,为了安全起见,爆破点周围半径米范围内不得进入,问在进行爆破时,公路段是否有危险,是否需要暂时封锁?请通过计算进行说明.26.已知,在平面直角坐标系中,、,m、n满足.C为AB的中点,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.(1)如图1,当点P在线段AB上运动时,点D恰在线段OA上,则PE与AB的数量关系为.(2)如图2,当点D在点A右侧时,(1)中结论是否成立?若成立,写出证明过程;若不成立,说明理由.(3)设AB=5,若∠OPD=45°,直接写出点D的坐标.

参考答案一、选择题(每题4分,共48分)1、B【解析】根据合并同类项、幂的乘方与积的乘方、同底数幂的乘法及除法法则进行计算即可.【详解】A、错误,a1与a3不是同类项,不能合并;B、正确,(a1)3=a6,符合积的乘方法则;C、错误,应为a6÷a1=a4;D、错误,应为1a×3a=6a1.故选B.【点睛】本题考查了合并同类项,同底数的幂的乘法与除法,幂的乘方,单项式的乘法,熟练掌握运算性质是解题的关键.2、D【分析】根据轴对称图形的概念求解.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.【详解】解:4个图形都是轴对称图形.故选D.【点睛】本题考查了轴对称图形的定义.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3、C【分析】根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;求得∠GAF=45°,即可得到∠AGB+∠AED=180°-∠GAF=115°.【详解】∵△AFE是由△ADE折叠得到,

∴AF=AD,∠AFE=∠AFG=∠D=90°,

又∵四边形ABCD是正方形,

∴AB=AD,∠B=∠D,

∴AB=AF,∠B=∠AFG=90°,

在Rt△ABG和Rt△AFG中,

∵,

∴Rt△ABG≌Rt△AFG(HL),

故①正确;

∵正方形ABCD中,AB=6,CD=1DE,

∵EF=DE=CD=2,

设BG=FG=x,则CG=6-x.

在直角△ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,

解得x=1.

∴BG=1,CG=6-1=1;

∴BG=CG;

∴②正确.

∵CG=BG,BG=GF,

∴CG=GF,

∴△FGC是等腰三角形,∠GFC=∠GCF.

又∵Rt△ABG≌Rt△AFG;

∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°-∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,

∴∠AGB=∠AGF=∠GFC=∠GCF,

∴AG∥CF;

∴③正确

∵∠BAG=∠FAG,∠DAE=∠FAE,

又∵∠BAD=90°,

∴∠GAE=45°,

∴∠AGB+∠AED=180°-∠GAE=115°.

∴④错误.

故选:C.【点睛】此题考查翻折变换的性质,正方形的性质,全等三角形的判定与性质,勾股定理,解题的关键是注意数形结合思想与方程思想的应用.4、D【分析】首先将分子、分母进行因式分解,然后根据分式的基本性质约分.【详解】解:,故选D.5、D【分析】利用勾股定理求出斜边即可.【详解】由勾股定理可得:斜边=,故选:D.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.6、A【分析】根据角平分线的性质和垂直得出△ACG是等腰三角形,再根据三角形的中位线定理即可得出答案.【详解】∵AD是△ABC的角平分线,CG⊥AD于点F∴△ACG是等腰三角形∴F是CG边上的中点,AG=AC=3又AE是△ABC的中线∴EF∥AB,EF=BG又∵BG=AB-AG=1∴EF=BG=故答案选择A.【点睛】本题考查了三角形,难度适中,需要熟练掌握角平分线、中线和三角形的中位线定理.7、C【解析】根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.【详解】解:A、是多项式乘法,不是分解因式,故本选项错误;

B、是提公因式法,不是分解因式,故本选项错误;

C、右边是积的形式,故本选项正确.D、没有把一个多项式化为几个整式的积的形式,错误.

故选:C.【点睛】此题考查了因式分解的意义;这类问题的关键在于能否正确应用分解因式的定义来判断.8、C【分析】根据三角形内角和为180°且等腰三角形的两个底角相等,再结合题中一个角是另一个角的2倍即可求解.【详解】解:由题意可知:设这个等腰三角形为△ABC,且,情况一:当∠B是底角时,则另一底角为∠A,且∠A=∠B=2∠C,由三角形内角和为180°可知:∠A+∠B+∠C=180°,∴5∠C=180°,∴∠C=36°,∠A=∠B=72°,此时可爱角为∠A=72°,情况二:当∠C是底角,则另一底角为∠A,且∠B=2∠A=2∠C,由三角形内角和为180°可知:∠A+∠B+∠C=180°,∴4∠C=180°,即∠C=45°,此时可爱角为∠A=45°,故选:C.【点睛】本题借助三角形内角和考查了新定义题型,关键是读懂题目意思,熟练掌握等腰三角形的两底角相等及三角形内角和为180°.9、C【分析】①在AE取点F,使EF=BE.利用已知条件AB=AD+2BE,可得AD=AF,进而证出2AE=AB+AD;

②在AB上取点F,使BE=EF,连接CF.先由SAS证明△ACD≌△ACF,得出∠ADC=∠AFC;再根据线段垂直平分线、等腰三角形的性质得出∠CFB=∠B;然后由邻补角定义及四边形的内角和定理得出∠DAB+∠DCB=180°;

③根据全等三角形的对应边相等得出CD=CF,根据线段垂直平分线的性质得出CF=CB,从而CD=CB;

④由于△CEF≌△CEB,△ACD≌△ACF,根据全等三角形的面积相等易证S△ACE-S△BCE=S△ADC.【详解】解:①在AE取点F,使EF=BE,

∵AB=AD+2BE=AF+EF+BE,EF=BE,

∴AB=AD+2BE=AF+2BE,

∴AD=AF,

∴AB+AD=AF+EF+BE+AD=2AF+2EF=2(AF+EF)=2AE,

∴AE=(AB+AD),故①正确;

②在AB上取点F,使BE=EF,连接CF.

在△ACD与△ACF中,∵AD=AF,∠DAC=∠FAC,AC=AC,

∴△ACD≌△ACF,

∴∠ADC=∠AFC.

∵CE垂直平分BF,

∴CF=CB,

∴∠CFB=∠B.

又∵∠AFC+∠CFB=180°,

∴∠ADC+∠B=180°,

∴∠DAB+∠DCB=360-(∠ADC+∠B)=180°,故②正确;

③由②知,△ACD≌△ACF,∴CD=CF,

又∵CF=CB,

∴CD=CB,故③正确;

④易证△CEF≌△CEB,

所以S△ACE-S△BCE=S△ACE-S△FCE=S△ACF,

又∵△ACD≌△ACF,

∴S△ACF=S△ADC,

∴S△ACE-S△BCE=S△ADC,故④错误;

即正确的有3个,

故选C.【点睛】本题考查了角平分线性质,全等三角形的性质和判定,等腰三角形的性质,四边形的内角和定理,邻补角定义等知识点的应用,正确作辅助线是解此题的关键,综合性比较强,难度适中.10、D【分析】根据三角形内角和定理求出∠ABD,根据角平分线的定义求出∠ABF,根据三角形的外角性质求出即可.【详解】解:∵AD是△ABC的高,∴∠ADB=90°,∵∠BAD=42°,∴∠ABD=180°﹣∠ADB﹣∠BAD=48°,∵BE是△ABC的角平分线,∴∠ABF=∠ABD=24°,∴∠BFD=∠BAD+∠ABF=42°+24°=66°,故选:D.【点睛】本题考查三角形内角和定理、角平分线的定义,解题的关键是熟记概念与定理并准确识图.11、C【分析】本题是已知平方项求乘积项,根据完全平方式的形式可得出k的值.【详解】由完全平方式的形式(a±b)2=a2±2ab+b2可得:

kx=±2•2x•,

解得k=±.故选:C【点睛】本题关键是有平方项求乘积项,掌握完全平方式的形式(a±b)2=a2±2ab+b2是关键.12、D【分析】首先写出各个命题的逆命题,然后进行判断即可.【详解】A、逆命题是:两个锐角互余的三角形是直角三角形,是真命题,故此选项不符合题意;B、逆命题是:如果一个三角形有两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形,是真命题,故此选项不符合题意;C、逆命题是:有两个角相等的三角形是等腰三角形,是真命题,故此选项不符合题意;D、逆命题是:如果两个角相等,那么它们是同一个角的余角,是假命题,故此选项符合题意.故选:D.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.二、填空题(每题4分,共24分)13、1【解析】作PE⊥OA于E,根据角平分线的性质可得PE=PD,根据平行线的性质可得∠ACP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得PD.【详解】作PE⊥OA于E,∵∠AOP=∠BOP,PD⊥OB,PE⊥OA,∴PE=PD(角平分线上的点到角两边的距离相等),∵∠BOP=∠AOP=15°,∴∠AOB=30°,∵PC∥OB,∴∠ACP=∠AOB=30°,∴在Rt△PCE中,PE=PC=×2=1(在直角三角形中,30°角所对的直角边等于斜边的一半),∴PD=PE=1,故选:D.【点睛】此题主要考查角平分线的性质和平行线的性质,难度一般,作辅助线是关键.14、15【分析】根据旋转的性质知∠DFC=60°,再根据EF=CF,EC⊥CF知∠EFC=45°,故∠EFD=∠DFC-∠EFC=15°.【详解】∵△DCF是△BCE旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE.又∵∠ECF=90°,∴∠EFC=∠FEC=(180°﹣∠ECF)=(180°﹣90°)=45°,故∠EFD=∠DFC﹣∠EFC=60°﹣45°=15°.【点睛】此题主要考查正方形的性质,解题的关键是熟知等腰直角三角形与正方形的性质.15、,,则且,【分析】根据要说明一个命题是假命题可以举个反例来说明,且反例要求符合原命题的条件,但结论却与原命题不一致进行分析即可.【详解】解:因为当,时,原条件ab>0仍然成立,所以反例为:,,则且,.故答案为:,,则且,.【点睛】本题考查命题相关,熟练掌握命题的定义即判断一件事情的语句,叫做命题以及判断一个命题是假命题,只需举出一个反例即可.16、±2【解析】分析:先化简,再分同正或同负两种情况作答.详解:因为xy=3,所以x、y同号,于是原式==,当x>0,y>0时,原式==2;当x<0,y<0时,原式==−2故原式=±2.点睛:本题考查的是二次根式的化简求值,能够正确的判断出化简过程中被开方数底数的符号是解答此题的关键.17、【分析】方程组利用加减消元法求出解即可.【详解】解,①+②得:3x=9,解得:x=3,把x=3代入①得:y=2,则方程组的解为,故答案为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18、1【分析】根据平行线的判定解决问题.【详解】要使直线a∥b,必须∠1+∠2+∠3=180°,∴∠1=180°−65°−65°=1°,故答案为1.【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(共78分)19、(1)证明见解析;(2),证明见解析【分析】(1)通过证明,从而证明,得证.(2)根据为的中点得出,再证明,求得,结合(1)所证,可得.【详解】(1)∵∴∵∴∴∴在△BDE和△ADC中∴∴(2),理由如下∵为的中点∴在△BEF和△CMF中∴∴由(1)得∴【点睛】本题考查了全等三角形的性质以及判定,掌握全等三角形的性质以及判定定理是解题的关键.20、(1)点A(1,3),B(4,3);(2)第一象限或第三象限.【分析】(1)由AB∥x轴知纵坐标相等求出a的值,再得出点A,B的坐标即可;(2)根据点B到y轴的距离等于点A到x轴的距离得出关于a的方程,解之可得;【详解】解:(1)∵线段AB∥x轴,∴2a-1=3,解得:a=2,∴点A(1,3),B(4,3);(2)∵点B到y轴的距离与点A到x轴的距离相等时,∴|a+2|=3,解得:a=1或a=-5,∴点B的坐标为(3,1)或(-3,-11),∴点B所在的位置为第一象限或第三象限.【点睛】本题主要考查坐标与图形的性质,重点在于理解点到坐标轴的距离与点坐标之间的关系.21、(1)60°;(2)1【分析】(1)先利用三角形的外角性质计算出∠ABE=15°,再利用角平分线定义得到∠ABC=2∠ABE=30°,然后根据高的定义和互余可求出∠BAF的度数;

(2)先根据中线定义得到BC=2BD=10,然后利用三角形面积公式求AF的长.【详解】(1)∵∠BED=∠ABE+∠BAE,∴∠ABE=40°-25°=15°,∵BE平分∠ABC,∴∠ABC=2∠ABE=30°,∵AF为高,∴∠AFB=90°,∴∠BAF=90°-∠ABF=90°-30°=60°;(2)∵AD为中线,∴BD=CD=5,∵S△ABC=AF•BC=40,∴AF==1.【点睛】本题考查了三角形内角和定理:三角形内角和是110°.也考查了三角形外角性质和三角形面积公式.本题的关键是充分应用三角形的角平分线、高和中线的定义.22、(1);(2)1,4,3;(3)【分析】(1)从整体和部分两方面表示该长方形的面积即可;(2)根据拼成前后长方形的面积不变可先算出该长方形的面积再确定A类B类C类纸片的张数;(3)由A类B类C类纸片的张数及面积可知构成的正方形的面积最大为,利用完全平方公式可得边长.【详解】解:(1)从整体表示该图形面积为,从部分表示该图形面积为,所以可得;(2)该长方形的面积为,A类纸片的面积为,B类纸片的面积为,C类纸片的面积为,所以需要类纸片1张,需要类纸片4张,需要类纸片3张;(3)A类纸片的面积为,有3张;B类纸片的面积为,有5张;C类纸片的面积为,有5张,所以能构成的正方形的面积最大为,因为,所以拼成的正方形的边长最长可以是.【点睛】本题考查了整式乘法的图形表示,灵活将图形与代数式相结合是解题的关键.23、(1)无解(2)【解析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)去分母得:2x-2+3x+3=6,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得:1-2x=2x-4,解得:x=,经检验x=是分式方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.24、(1)甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)应该选择甲工程队承包该项工程.【分析】(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;

(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.【详解】(1)设甲工程队单独完成该工程需天,则乙工程队单独完成该工程需天.根据题意得:方程两边同乘以,得解得:经检验,是原方程的解.∴当时,.答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天.(2)因为甲乙两工程队均能在规定的35天内单独完成,所以有如下三种方案:方案一:由甲工程队单独完成.所需费用为:(万元);方案二:由乙工程队单独完成.所需费用为:(万元);方案三:由甲乙两队合作完成.所需费用为:(万元).∵∴应该选择甲工程队承包该项工程.【点睛】本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.25、没有危险,因此AB段公路不需要暂时封锁.【分析】本题需要判断点C到AB的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C作CD⊥AB于D,然后根据勾股定理在直角三角形ABC中即可求出AB的长度,然后利用三角形的公式即可求出CD,然后和250米比较大小即可判断需要暂时封锁.【详解】解:如图,过C作CD⊥AB于D,∵BC=800米,AC=600米,∠ACB=90

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论