版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届浙江省宁波市海曙区三校联考八年级数学第一学期期末考试试题考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知等腰三角形的两边长满足+(b﹣5)2=0,那么这个等腰三角形的周长为()A.13 B.14 C.13或14 D.92.下列图形中,不一定是轴对称图形的是()A.正方形 B.等腰三角形 C.直角三角形 D.圆3.如图,在△ABC中,∠BAC=60°,∠BAC的平分线AD与边BC的垂直平分线相交于点D,DE⊥AB交AB的延长线于点E,DF⊥AC于点F,现有下列结论:①DE=DF;②DE+DF=AD;③AM平分∠ADF;④AB+AC=2AE;其中正确的有()A.个 B.个 C.个 D.个4.某手机公司接到生产万部手机的订单,为尽快交货.…,求每月实际生产手机多少万部?在这道题目中,若设每月实际生产手机万部,可得方程,则题目中“…”处省略的条件应是()A.实际每月生产能力比原计划提高了,结果延期个月完成B.实际每月生产能力比原计划提高了,结果提前个月完成C.实际每月生产能力比原计划降低了,结果延期个月完成D.实际每月生产能力比原计划降低了,结果提前个月完成5.估计的值在()A.3.2和3.3之间 B.3.3和3.4之间 C.3.4和3.5之间 D.3.5和3.6之间6.代数之父——丢番图(Diophantus)是古希腊的大数学家,是第一位懂得使用符号代表数来研究问题的人.丢番图的墓志铭与众不同,不是记叙文,而是一道数学题.对其墓志铭的解答激发了许多人学习数学的兴趣,其中一段大意为:他的一生幼年占,青少年占,又过了才结婚,5年后生子,子先父4年而卒,寿为其父之半.下面是其墓志铭解答的一种方法:解:设丢番图的寿命为x岁,根据题意得:,解得.∴丢番图的寿命为84岁.这种解答“墓志铭”体现的思想方法是()A.数形结合思想 B.方程思想 C.转化思想 D.类比思想7.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.19.19.19.1方差7.68.69.69.7根据表中数据,要从中选择一名成绩发挥稳定的运动员参加比赛,应选择()A.甲 B.乙 C.丙 D.丁8.在等腰三角形中,,则可以有几个不同值()A.4个 B.3个 C.2个 D.1个9.如图,在中,,,,点到的距离是()A. B. C. D.10.式子中x的取值范围是()A.x≥1且x≠2 B.x>1且x≠2 C.x≠2 D.x>111.下列各组数为勾股数的是()A.7,12,13 B.3,4,7 C.3,4,6 D.8,15,1712.能将三角形面积平分的是三角形的()A.角平分线 B.高 C.中线 D.外角平分线二、填空题(每题4分,共24分)13.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=______度.14.七巧板被誉为“东方魔板”.小明利用七巧板(如图1)中各板块的边长之间的关系拼成一个凸六边形,则该凸六边形(如图2)的周长是_____.15.如图,木工师傅在做完门框后,为防止变形常常如图中所示那样钉上两条斜拉的木条,这样做是运用了三角形的________.16.把多项式分解因式的结果为__________________.17.函数中,自变量的取值范围是.18.如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=2cm,则AB=cm.三、解答题(共78分)19.(8分)先化简,再求值:,其中,满足.20.(8分)如图,已知△ABC和△DBE都是等腰直角三角形,∠ABC=∠DBE=90°,点D在线段AC上.(1)求∠DCE的度数;(2)当点D在线段AC上运动时(D不与A重合),请写出一个反映DA,DC,DB之间关系的等式,并加以证明.21.(8分)在边长为1的小正方形网格中,的顶点均在格点上,(1)点关于轴的对称点坐标为;(2)将向左平移3个单位长度得到,请画出,求出的坐标;(3)求出的面积.22.(10分)为响应珠海环保城市建设,我市某污水处理公司不断改进污水处理设备,新设备每小时处理污水量是原系统的1.5倍,原来处理1200m3污水所用的时间比现在多用10小时.(1)原来每小时处理污水量是多少m2?(2)若用新设备处理污水960m3,需要多长时间?23.(10分)如图,在平面直角坐标系中,的三个顶点坐标分别为,,.(1)在图中画出关于轴对称的;(2)通过平移,使移动到原点的位置,画出平移后的.(3)在中有一点,则经过以上两次变换后点的对应点的坐标为.24.(10分)已知△ABC中,AB=17,AC=10,BC边上得高AD=8,则边BC的长为________25.(12分)运用乘法公式计算:(2x﹣1)(2x+1)﹣(x﹣6)(4x+3).26.为了解某区八年级学生的睡眠情况,随机抽取了该区八年级学生部分学生进行调查.已知D组的学生有15人,利用抽样所得的数据绘制所示的统计图表.组别睡眠时间根据图表提供的信息,回答下列问题:(1)试求“八年级学生睡眠情况统计图”中的a的值及a对应的扇形的圆心角度数;(2)如果睡眠时间x(时)满足:,称睡眠时间合格.已知该区八年级学生有3250人,试估计该区八年级学生睡眠时间合格的共有多少人?(3)如果将各组别学生睡眠情况分组的最小值(如C组别中,取),B、C、D三组学生的平均睡眠时间作为八年级学生的睡眠时间的依据.试求该区八年级学生的平均睡眠时间.
参考答案一、选择题(每题4分,共48分)1、C【解析】首先依据非负数的性质求得a,b的值,然后得到三角形的三边长,接下来,利用三角形的三边关系进行验证,最后求得三角形的周长即可.【详解】解:根据题意得,a﹣4=0,b﹣5=0,解得a=4,b=5,①4是腰长时,三角形的三边分别为4、4、5,∵4+4=8>5,∴能组成三角形,周长=4+4+5=13,②4是底边时,三角形的三边分别为4、5、5,能组成三角形,周长=4+5+5=1,所以,三角形的周长为13或1.故选:C.【点睛】本题主要考查的是非负数的性质、等腰三角形的定义,三角形的三边关系,利用三角形的三边关系进行验证是解题的关键.2、C【解析】正方形、等腰三角形、圆一定是轴对称图形,等腰直角三角形是轴对称图形,故选C3、B【分析】①由角平分线的性质可知①正确;②由题意可知∠EAD=∠FAD=30°,故此可知ED=AD,DF=AD,从而可证明②正确;③若DM平分∠ADF,则∠EDM=90°,从而得到∠ABC为直角三角形,条件不足,不能确定,故③错误;④连接BD、DC,然后证明△EBD≌△DFC,从而得到BE=FC,从而可证明④.【详解】如图所示:连接BD、DC,①∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴ED=DF,∴①正确;②∵∠EAC=60°,AD平分∠BAC,∴∠EAD=∠FAD=30°,∵DE⊥AB,∴∠AED=90°,∵∠AED=90°,∠EAD=30°,∴ED=AD,同理:DF=AD,∴DE+DF=AD,∴②正确;③由题意可知:∠EDA=∠ADF=60°,假设MD平分∠ADF,则∠ADM=30°.则∠EDM=90°,又∵∠E=∠BMD=90°,∴∠EBM=90°,∴∠ABC=90°,∵∠ABC是否等于90°不知道,∴不能判定MD平分∠ADF,故③错误;④∵DM是BC的垂直平分线,∴DB=DC,在Rt△BED和Rt△CFD中,∴Rt△BED≌Rt△CFD(HL),∴BE=FC,∴AB+AC=AE﹣BE+AF+FC,又∵AE=AF,BE=FC,∴AB+AC=2AE,故④正确,所以正确的有3个,故选B.【点睛】本题考查了全等三角形的判定与性质,角平分线的性质,线段垂直平分线的性质,含30度角的直角三角形的性质,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.4、B【分析】由代表的含义找出代表的含义,再分析所列方程选用的等量关系,即可找出结论.【详解】设每月实际生产手机万部,则即表示:实际每月生产能力比原计划提高了,∵方程,即,其中表示原计划生产所需时间,表示实际生产所需时间,∴原方程所选用的等量关系为:实际生产比原计划提前个月完成,
即实际每月生产能力比原计划提高了,结果提前个月完成.
故选:B.【点睛】本题考查了分式方程的应用,根据所列分式方程,找出选用的等量关系是解题的关键.5、C【分析】利用平方法即可估计,得出答案.【详解】解:∵3.52=12.25,3.42=11.56,而12.25>11.6>11.56,∴,故选:C.【点睛】本题考查无理数的估算,掌握算术平方根的意义是正确解答的关键.6、B【分析】根据解题方法进行分析即可.【详解】根据题意,可知这种解答“墓志铭”的方法是利用设未知数,根据已经条件列方程求解,体现的思想方法是方程思想,故选:B.【点睛】本题考查了解题思想中的方程思想,掌握知识点是解题关键.7、D【分析】利用平均数和方差的意义进行判断.【详解】解:丁的平均数最大且方差最小,成绩最稳当,所以选丁运动员参加比赛.故选:D.【点睛】本题考查平均数和方差在数据统计中的意义,理解掌握它们的意义是解答关键.8、B【分析】根据等腰三角形的定义,∠A可能是底角,也可能是顶角,进行分类讨论即可.【详解】解:①当∠A是顶角时,∠B=∠C=,②当∠A为底角,∠B也为底角时,,③当∠A为底角,∠B为顶角时,∠B=,故答案为:B.【点睛】本题考查了等腰三角形等边对等角的性质,涉及分类讨论问题,解题的关键是对∠A,∠B进行分类讨论.9、A【分析】根据勾股定理求出AB,再根据三角形面积关系求CD.【详解】在中,,,,所以AB=因为AC∙BC=AB∙CD所以CD=故选A【点睛】考核知识点:勾股定理的运用.利用面积关系求斜边上的高是关键.10、A【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【详解】根据题意得x−1⩾0且x−2≠0解得:x⩾1且x≠2.故选A.【点睛】本题主要考查二次根式有意义的条件,分式有意义的条件,熟悉掌握条件是关键.11、D【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【详解】解:A、不是勾股数,因为72+122≠132;B、不是勾股数,因为32+42≠72;C、不是勾股数,因为32+42≠62;D、是勾股数,因为82+152=172,且8,15,17是正整数.故选:D.【点睛】本题考查了勾股定理中勾股数的意义,理解掌握其判断方法是关键.12、C【解析】试题解析:根据三角形的面积公式,只要两个三角形具有等底等高,则两个三角形的面积相等.根据三角形的中线的概念,故能将三角形面积平分的是三角形的中线.故选C.考点:1.三角形的中线;2.三角形的面积.二、填空题(每题4分,共24分)13、120【分析】根基三角形全等的性质得到∠C=∠C′=24°,再根据三角形的内角和定理求出答案.【详解】∵,∴∠C=∠C′=24°,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=120°,故答案为:120.【点睛】此题考查三角形全等的性质定理:全等三角形的对应角相等,三角形的内角和定理.14、4+8【分析】由正方形的性质和勾股定理求出各板块的边长,即可求出凸六边形的周长.【详解】解:如图所示:图形1:边长分别是:4,2,2;图形2:边长分别是:4,2,2;图形3:边长分别是:2,,;图形4:边长是:;图形5:边长分别是:2,,;图形6:边长分别是:,2;图形7:边长分别是:2,2,2;∴凸六边形的周长=2+2×2+2+×4=4+8;故答案为:4+8.【点睛】本题考查了正方形的性质、勾股定理、等腰直角三角形的性质;熟练掌握正方形的性质,利用勾股定理进行计算是解题关键15、稳定性【分析】根据“防止变形”的目的,联系三角形的性质,可得出答案.【详解】由三角形的稳定性可知,钉上两条斜拉的木条,可以防止变形,故答案是运用了三角形的稳定性.【点睛】本题考查了三角形稳定性的实际应用,熟练掌握三角形的性质即可完成.16、【分析】先提取公因式,再根据完全平方公式分解.【详解】解:.故答案为:.【点睛】本题考查了多项式的因式分解,属于基本题型,熟练掌握分解因式的方法是解题关键.17、.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.【详解】依题意,得x-1≥0,
解得:x≥1.【点睛】本题考查的知识点为:二次根式的被开方数是非负数.18、1.【解析】试题分析:因为Rt△ABC中,∠ACB=90°,D是AB的中点,CD=2cm,所以AB="2"CD=1.考点:直角三角形斜边上的中线.三、解答题(共78分)19、,6【分析】根据整式的四则混合运算先化简代数式,再根据确定x和y的值,代入求值即可.【详解】解:=4x2-4xy+y2-4x2+y2+3xy-2y2=.∵∴,∴,∴原式=.【点睛】本题考查代数式的化简求值.熟练掌握整式的乘法、平方差公式、完全平方公式、绝对值及算术平方根的非负性是解题的关键.20、(1)见解析;(1)1BD1=DA1+DC1,见解析【分析】(1)只要证明△ABD≌△CBE(SAS),推出∠A=∠ACB=∠BCE=45°即可解决问题;(1)存在,1BD1=DA1+DC1;在Rt△DCE中,利用勾股定理证明即可.【详解】(1)∵△ABC是等腰直角三角形,∴AB=BC,∠ABC=90°,∠A=∠ACB=45°,同理可得:DB=BE,∠DBE=90°,∠BDE=∠BED=45°,∴∠ABD=∠CBE,在△ABD与△CBE中,AB=BC,∠ABD=∠CBE,DB=BE,∴△ABD≌△CBE(SAS),∴∠A=∠BCE=45°∴∠DCE=∠ACB+∠BCE=90°.(1)1BD1=DA1+DC1.证明如下:∵△BDE是等腰直角三角形,∴DE=BD,∴DE1=1BD1,∵△ABD≌△CBE,∴AD=CE,∴DE1=DC1+CE1=AD1+CD1,故1BD1=AD1+CD1.【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的性质、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.21、(1)点关于轴的对称点坐标为;(2)图详见解析,的坐标为;(3)【分析】(1)关于轴对称的两点横坐标互为相反数,纵坐标相等即得;(2)先找出关键点,再将关键点向左平移3个单位长度并顺次连接即得,最后根据图即得的坐标;(3)将填充成梯形并求出面积,再将梯形面积减去增加部分即得.【详解】解:(1)∵点坐标为(3,2)∴点关于轴的对称点坐标为(,);(2)如图所示,的坐标为(,)(3)如下图作梯形∵∴【点睛】本题考查直角坐标系中图形平移、轴对称的坐标特征及填补法求三角形的面积,解题关键是熟练掌握关于轴对称的两点横坐标互为相反数且纵坐标相等,画平移后的图形先找关键点,填充法求三角形面积.22、(1)原来每小时处理污水量是40m2;(2)需要16小时.【解析】试题分析:设原来每小时处理污水量是xm2,新设备每小时处理污水量是1.5xm2,根据原来处理1200m3污水所用的时间比现在多用10小时这个等量关系,列出方程求解即可.根据即可求出.试题解析:设原来每小时处理污水量是xm2,新设备每小时处理污水量是1.5xm2,根据题意得:去分母得:解得:经检验是分式方程的解,且符合题意,则原来每小时处理污水量是40m2;(2)根据题意得:(小时),则需要16小时.23、(1)图见解析;(2)图见解析;(3)【分析】(1)先分别找到A、B、C关于x轴的对称点,然后连接、、即可;(2)先判断移动到原点的位置时的平移规律,然后分别将、按此规律平移,得到、,连接、、即可;(3)根据关于x轴对称的两点坐标关系:横坐标相同,纵坐标互为相反数即可得到,然后根据(2)中的平移规律即可得到的坐标.【详解】解:(1)先分别找到A、B、C关于x轴的对称点,然后连接、、,如下图所示:即为所求(2)∵∴∴到点O(0,0)的平移规律为:先向左平移4个单位,再向上平移2个单位分别将、按此规律平移,得到、,连接、、,如图所示,即为所求;(3)由(1)可知,经过第一次变化后为然后根据(2)的平移规律,经过第二次变化后为故答案为:.【点睛】此题考查的是画已知图形关于x轴对称的图形、平移后的图形、点的对称规律和平移规律,掌握关于x轴对称图形画法、平移后的图形画法、关于x轴对称两点坐标规律和坐标的平移规律是解决此题的关键.24、21或1【分析】由题意得出∠ADB=∠ADC=10°,由勾股定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度工程分包解除合同2篇
- 效果图合同范本
- 酒店转让协议书范本
- 年度城市轨道交通建设合同(2024版)
- 鱼塘合作协议合同范本
- 四年级方程知识课件
- 风筝真美丽课件
- 2024年度电竞产业合作开发合同
- 《中国古代陶器》课件
- 食堂泔水处理协议书模板
- pep人教版英语六年级上册Unit2《Waystogotoschool》大单元作业设计(三)
- 五年级家长会课件(共22张PPT)
- 《校园植物探秘》校本课程开发实施纲要
- 初中物理人教九年级(2023年更新)第十七章 欧姆定律九年级物理电阻的测量教学设计
- 【机械手】-简易物料搬运机械手的PLC设计
- 言语的第三思维结合语境
- TD-T 1070.4-2022 矿山生态修复技术规范 第4部分:建材矿山
- 城市轨道交通设备系统之通风空调系统概述
- 绿盟极光漏洞扫描工具使用方法
- APQP-4-08产品质量策划总结和认定报告
- 五年级语文上学情分析(每一课都有,全)
评论
0/150
提交评论