版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省南通市港闸区数学八上期末考试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下面有4个汽车商标图案,其中是轴对称图形的是()A. B. C. D.2.已知关于x的方程=3的解是正数,那么m的取值范围为()A.m>-6且m≠-2 B.m<6 C.m>-6且m≠-4 D.m<6且m≠-23.某班有若干个活动小组,其中书法小组人数的3倍比绘画小组的人数多15人,绘画小组人数的2倍比书法小组的人数多5人,问:书法小组和绘画小组各有多少人?若设书法小组有x人,绘画小组有y人,那么可列方程组为()A. B. C. D.4.下列分式的变形正确的是()A. B.C. D.5.在△ABC中,若∠A=80°,∠B=30°,则∠C的度数是()A.70° B.60° C.80° D.50°6.如果向西走3米,记作-3m,那么向东走5米,记作().A.3m B.5m C.-3m D.-5m7.计算的结果是(
).A.
B.
C. D.8.若,则的值为()A.2020 B.2019 C.2021 D.20189.计算:﹣64的立方根与16的平方根的和是()A.0 B.﹣8 C.0或﹣8 D.8或﹣810.9的算术平方根是()A.3 B. C.±3 D.±11.若过多边形的每一个顶点只有6条对角线,则这个多边形是()A.六边形 B.八边形 C.九边形 D.十边形12.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC⋅AH D.AB=AD二、填空题(每题4分,共24分)13.如图,在中,和的平分线相交于点,过点作,分别交、于点、.若,,那么的周长为_______.14.如图,中,,,BD⊥直线于D,CE⊥直线L于E,若,,则____________.15.一个正数的两个平方根分别是3a+2和a-1.则a的值是_______.16.若a是有理数,使得分式方程=1无解,则另一个方程=3的解为_____.17.在某中学举行的演讲比赛中,八年级5名参赛选手的成绩如下表所示,你根据表中提供的数据,计算出这5名选手成绩的方差_______.选手1号2号3号4号5号平均成绩得分9095■89889118.在直角坐标系中,直线y=x+1与y轴交于点A,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C3C2…,A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,图中阴影部分三角形的面积从左到右依次记为S1、S2、S3、…Sn,则Sn的值为__(用含n的代数式表示,n为正整数).三、解答题(共78分)19.(8分)等边△ABC的边BC在射线BD上,动点P在等边△ABC的BC边上(点P与BC不重合),连接AP.(1)如图1,当点P是BC的中点时,过点P作于E,并延长PE至N点,使得.①若,试求出AP的长度;②连接CN,求证.(2)如图2,若点M是△ABC的外角的角平分线上的一点,且,求证:.20.(8分)请写出求解过程(1)一个多边形的内角和是720°,求这个多边形的边数.(2)在△ABC中,∠C=90°,∠A=2∠B,求∠A,∠B的度数.21.(8分)计算:①(﹣a•a2)(﹣b)2+(﹣2a3b2)2÷(﹣2a3b2)②(x﹣2y)(3x+2y)﹣(x﹣2y)222.(10分)如图为一个广告牌支架的示意图,其中AB=13m,AD=12m,BD=5m,AC=15m,求图中△ABC面积.23.(10分)在△ABC中,∠ABC和∠ACB的平分线相交于点O,(1)若∠ABC=60°,∠ACB=40°,求∠BOC的度数;(2)若∠ABC=60°,OB=4,且△ABC的周长为16,求△ABC的面积24.(10分)探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图(1)观察“规形图(1)”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下问题:①如图(2),把一块三角尺XYZ放置在△ABC上使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=40°,则∠ABX+∠ACX=°.②如图(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数.25.(12分)某校组织了一次环保知识竞赛,每班选25名同学参加比赛,成绩分别为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将某年级的一班和二班的成绩整理并绘制成统计图,试根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整;(2)根据下表填空:a=,b=,c=;平均数(分)中位数(分)众数(分)一班ab90二班1.680c(3)请从平均数和中位数或众数中任选两个对这次竞赛成绩的结果进行分析.26.甲、乙两校参加学生英语口语比赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、1分、9分、10分(满分为10分),乙校平均分是1.3分,乙校的中位数是1分.依据统计数据绘制了如下尚不完整的甲校成绩统计表和乙校成绩统计图;甲校成绩统计表分数7分1分9分10分人数110■1(1)请你将乙校成绩统计图直接补充完整;(2)请直接写出甲校的平均分是,甲校的中位数是,甲校的众数是,从平均分和中位数的角度分析校成绩较好(填“甲”或“乙”).
参考答案一、选择题(每题4分,共48分)1、B【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行分析即可.【详解】解:①②③都是轴对称图形,④不是轴对称图形,故选B.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.2、C【分析】先求得分式方程的解(含m的式子),然后根据解是正数可知m+2>0,从而可求得m>-2,然后根据分式的分母不为0,可知x≠1,即m+2≠1.【详解】将分式方程转化为整式方程得:1x+m=3x-2解得:x=m+2.∵方程得解为正数,所以m+2>0,解得:m>-2.∵分式的分母不能为0,∴x-1≠0,∴x≠1,即m+2≠1.∴m≠-3.故m>-2且m≠-3.故选C.【点睛】本题主要考查的是解分式方程和一元一次不等式的应用,求得方程的解,从而得到关于m的不等式是解题的关键.3、D【解析】由两个句子:“书法小组人数的3倍比绘画小组的人数多15人”,“绘画小组人数的2倍比书法小组的人数多5人”,得两个等量关系式:①3×书法小组人数=绘画人数+153×书法小组人数-绘画人数=15,②2×绘画小组人数=书法小组的人数+52×绘画小组人数-书法小组的人数=5,从而得出方程组.故选D.点睛:应用题的难点,一是找到等量关系,二是根据等量关系列出方程.本题等量关系比较明显,找出不难,关键是如何把等量关系变成方程,抓住以下关键字应着的运算符号:和(+)、差(—)、积(×)、商(÷)、倍(×)、大(+)、小(—)、多(+)、少(—)、比(=),从而把各种量联系起来,列出方程,使问题得解.4、A【分析】根据分式的基本性质进行判断.【详解】A选项:,故正确;B选项:,故错误;C选项:,故错误;D选项:,故错误;故选:A.【点睛】考查了分式的基本性质,解题的关键是熟练运用分式的基本性质.5、A【分析】根据三角形的内角和定理,即可求出答案.【详解】解:∵∠A=80°,∠B=30°,∴,故选:A.【点睛】本题考查了三角形的内角和定理,解题的关键是掌握三角形的内角和等于180°.6、B【解析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向西走3米记作-3米,∴向东走5米记作+5米.故选:B.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.7、D【解析】试题分析:积的乘方等于乘方的积;幂的乘方法则:底数不变,指数相乘.8、A【分析】根据已知方程可得,代入原式计算即可.【详解】解:∵∴∴原式=故选:A【点睛】这类题解法灵活,可根据所给条件和求值式的特征进行适当的变形、转化.9、C【分析】由题意得,﹣64的立方根为﹣4,16的平方根为±4,再计算它们的和即可.【详解】解:由题意得:﹣64的立方根为﹣4,16的平方根为±4,∴﹣4+4=0或﹣4-4=-1.故选:C.【点睛】此题考查立方根的定义和平方根的定义,注意:一个正数有两个平方根;0只有一个平方根,就是0本身;负数没有平方根.10、A【分析】根据算术平方根的定义即可得到结果.【详解】解:∵32=9∴9的算术平方根是3,故选:A.【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是解题的关键.11、C【分析】从n边形的一个顶点可以作条对角线.【详解】解:∵多边形从每一个顶点出发都有条对角线,∴多边形的边数为6+3=9,∴这个多边形是九边形.故选:C.【点睛】掌握边形的性质为本题的关键.12、A【详解】解:如图连接CD、BD,∵CA=CD,BA=BD,
∴点C、点B在线段AD的垂直平分线上,
∴直线BC是线段AD的垂直平分线,
故A正确.
B、错误.CA不一定平分∠BDA.
C、错误.应该是S△ABC=•BC•AH.
D、错误.根据条件AB不一定等于AD.
故选A.二、填空题(每题4分,共24分)13、【分析】根据角平分线的性质,可得∠EBO与∠OBC的关系,∠FCO与∠OCB的关系,根据平行线的性质,可得∠DOB与∠BOC的关系,∠FOC与∠OCB的关系,根据等腰三角形的判定,可得OE与BE的关系,OE与CE的关系,根据三角形的周长公式,可得答案.【详解】∵∠ABC与∠ACB的平分线相交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB.∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EOB=∠EBO,∠FOC=∠FCO,∴EO=BE,OF=FC.C△AEF=AE+EF+AF=AE+BE+AF+CF=AB+AC=1.故答案为:1.【点睛】本题考查了等腰三角形的判定与性质,利用等腰三角形的判定与性质是解题关键,又利用了角平分线的性质,平行线的性质.14、【分析】用AAS证明△ABD≌△CAE,得AD=CE,BD=AE,得出DE=BD+CE=9cm即可.【详解】解:∵在Rt△ABC中,∠BAC=90°,∠ADB=∠AEC=90°,
∴∠BAD+∠EAC=90°,∠BAD+∠ABD=90°,
∴∠EAC=∠ABD,
在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),
∴AD=CE,BD=AE,
∴DE=AD+AE=CE+BD=9cm.
故答案为:9cm.【点睛】本题考查三角形全等的判定与性质,证明三角形全等得出对应边相等是解决问题的关键.15、.【详解】根据题意得:3a+2+a-1=0,解得:a=.考点:平方根.16、x=﹣1.【分析】若a是有理数,使得分式方程=1无解,即x=a,把这个分式方程化为整式方程,求得a的值,再代入所求方程求解即可.【详解】解:∵=1,∴3x+9=x﹣a,∵分式方程=1无解,∴x=a,∴3a+9=0,∴a=﹣3,当a=﹣3时,另一个分式方程为=3,解得,x=﹣1,经检验,x=﹣1是原方程的根.故答案为:x=﹣1.【点睛】本题主要考查解分式方程和分式方程的解,掌握解分式方程的方法是解题的关键.17、6.8;【分析】首先根据五名选手的平均成绩求得3号选手的成绩,然后利用方差公式直接计算即可.【详解】解:观察表格知道5名选手的平均成绩为91分,∴3号选手的成绩为:91×5-90-95-89-88=93(分),∴方差为:[(90-91)2+(95-91)2+(93-91)2+(89-91)2+(88-91)2]=6.8,故答案为:6.8.【点睛】本题考查了求方差,以及知道平均数求某个数据,解题的关键是掌握求方差的公式,以及正确求出3号选手的成绩.18、.【解析】试题分析:∵直线,当x=0时,y=1,当y=0时,x=﹣1,∴OA1=1,OD=1,∴∠ODA1=45°,∴∠A2A1B1=45°,∴A2B1=A1B1=1,∴=,∵A2B1=A1B1=1,∴A2C1=2=,∴=,同理得:A3C2=4=,…,=,∴=,故答案为.考点:1.一次函数图象上点的坐标特征;2.正方形的性质;3.规律型.三、解答题(共78分)19、(1)①AP;②证明见解析;(2)证明见解析.【分析】(1)①根据点P是BC的中点,利用等腰三角形三线合一的性质得AP⊥BC,再利用勾股定理即可求得答案;②根据轴对称的性质,证得∠NCE=∠PCE=,从而证得结论;(2)作∠CBF=60°,BF与MC的延长线相交于点F,连接PF,证明△BFC是等边三角形,证得△ABP△FBP,PM=PF,∠PMC=∠PFC,根据三角形外角的性质可得结论.【详解】(1)①在等边△ABC中,∵点P是BC的中点,,∴AP⊥BC,,∴AP=;②∵且,∴点N与点P关于直线AC对称,∴∠NCE=∠PCE=,∴∠NCD=180∠NCE∠PCE=,∴∠NCD=∠B=,∴;(2)作∠CBF=60°,BF与MC的延长线相交于点F,连接PF,如图:∵△ABC是等边三角形,
∴∠ABC=∠ACB=60,
∴∠ACD=120,
∵CM平分∠ACD,
∴∠DCM=∠BCF=60,
∵∠CBF=60,
∴∠FBC=∠BCF=∠BFC=60,
∴△BFC是等边三角形,∵△ABC和△BFC都是等边三角形,
∴AB=BC=BF,
在△ABP和△FBP中,,∴△ABP△FBP,∴AP=PF,∠BAP=∠BFP,
∵AP=PM,
∴PM=PF,
∴∠PMC=∠PFC,∵∠MCD=∠PMC+∠CPM=60,
∠BFC=∠BFP+∠PFC=60,
∴∠CPM=∠BFP=∠BAP,
∵∠APC=∠ABC+∠BAP=∠APM+∠CPM,
∴∠APM=60.【点睛】本题是三角形综合题目,考查了等边三角形的性质和判定,全等三角形的判定与性质,三角形的外角性质等知识;熟练掌握等边三角形的性质,通过作辅助线构造三角形全等是解本题的关键.20、(1)6;(2)∠B=30°,∠A=60°【分析】(1)设这个多边形的边数为n,根据多边形的内角和定理得到(n-2)×180°=720°,然后解方程即可.(2)首先根据在Rt△ABC中,∠C=90°,可得∠A+∠B=90°;然后根据∠A=2∠B,求出∠A,∠B的度数各是多少即可.【详解】(1)解:设这个多边形的边数为n(n-2)180°=720°n=6答:这个多边形的边数为6(2)解:在△ABC中,∵∠C=90°∴∠A+∠B=90°又∵∠A=2∠B∴2∠B+∠B=90∴∠B=30°∴∠A=60°【点睛】此题考查多边形的内角和定理,直角三角形的性质和应用,解题关键是根据n边形的内角和为(n-2)×180°解答.21、①﹣3a3b2;②2x2﹣8y2【分析】①先计算乘方运算,在计算乘除运算,最后算加减运算即可得出答案;②根据多项式乘多项式和完全平方公式可以解答本题.【详解】①解:(﹣a•a2)(﹣b)2+(﹣2a3b2)2÷(﹣2a3b2)=﹣a3•b2+4a6b4÷(﹣2a3b2)=﹣a3b2﹣2a3b2=﹣3a3b2②解:(x﹣2y)(3x+2y)﹣(x﹣2y)2=3x2+2xy﹣6xy﹣4y2﹣x2+4xy﹣4y2=2x2﹣8y2【点睛】本题考查整式的混合运算,有乘方、乘除、加减的混合运算中,要按照先乘方后乘除、最后加减的顺序运算,其运算顺序和有理数的混合运算顺序相似.掌握整式的混合运算顺序是解题的关键.22、84m1【分析】由可推导出△ABD为直角三角形且;从而推导出△ADC为直角三角形,再利用勾股定理计算得CD,从而完成求解.【详解】∵AB=13m,AD=11m,BD=5m∴∴△ABD为直角三角形且∴∴△ADC为直角三角形∴∴∴∵∴m1.【点睛】本题考察了勾股定理和勾股定理的逆定理.求解的关键是熟练掌握勾股定理的性质,完成求解.23、(1)∠COB=130°;(2)16.【分析】(1)利用角平分线的定义及三角形内角和即可得出答案;(2)过O作OD⊥BC于D点,连接AO,通过O为角平分线的交点,得出点O到三边的距离相等,利用特殊角的三角函数值求出距离,然后利用和周长即可得出答案.【详解】(1)解:∵BO、CO分别平分∠ABC和∠ACB∵∠ABC=60°,∠ACB=40°∴∠OBC=30°,20°(2)过O作OD⊥BC于D点,连接AO∵O为角平分线的交点∴点O到三边的距离相等又∵∠ABC=60°,OB=4∴∠OBD=30°,OD=2即点O到三边的距离都等于2∴又∵△ABC的周长为16∴【点睛】本题主要考查角平分线的性质,掌握角平分线的性质是解题的关键.24、(1)∠BDC=∠BAC+∠B+∠C,理由见解析;(2)①50;②∠DCE=85°.【分析】(1)首先连接AD并延长至点F,然后根据外角的性质,即可判断出∠BDC=∠BAC+∠B+∠C;(2)①由(1)可得∠A+∠ABX+∠ACX=∠X,然后根据∠A=40°,∠X=90°,即可求解;(3)②由∠A=40°,∠DBE=130°,求出∠ADE+∠AEB的值,然后根据∠DCE=∠A+∠ADC+∠AEC,求出∠DCE的度数即可.【详解】(1)如图,∠BDC=∠BAC+∠B+∠C,理由是:过点A、D作射线AF,∵∠FDC=∠DAC+∠C,∠BDF=∠B+∠BAD,∴∠FDC+∠BDF=∠DAC+∠BAD+∠C+∠B,即∠BDC=∠BAC+∠B+∠C;(2)①如图(2),∵∠X=90°,由(1)知:∠A+∠ABX+∠ACX=∠X=90°,∵∠A=40°,∴∠ABX+∠ACX=50°,故答案为50;②如图(3),∵∠A=40°,∠DBE=130°,∴∠ADE+∠AEB=130°﹣40°=90°,∵DC平分∠ADB,EC平分∠AEB,∴∠ADC=∠ADB,∠AEC=∠AEB,∴∠ADC+∠AEC==45°,∴∠DCE=∠A+∠ADC+∠AEC=40°+45°=85°.【点睛】本题主要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年线路施工合同
- 房屋抵押合同样本模板
- 技术转让(专利申请权)合同模板
- 城市粮食销售合同样本
- 个人信用担保借款合同
- 女方自愿离婚协议书范例
- 停车场租赁合同书格式
- 医师执业资格证租赁合同
- 工程合作合同书模板
- 住宅小区售房合同样本
- 印刷排版岗位招聘笔试题与参考答案(某大型央企)2025年
- 院前急救与院内急诊有效衔接工作制度
- 【餐饮店铺管理系统设计与实现(论文)15000字】
- 2.1充分发挥市场在资源配置中的决定性作用(课件) 2024-2025学年高中政治 必修2 经济与社会
- Unit+5+Fun+Clubs+Section+A++(1a-1d)教学课件-2024-2025学年人教新目标(2024)七年级英语上册
- 超聚变 FCIA 考试题库
- 2024-2025学年初中地理七年级上册(2024)晋教版(2024)教学设计合集
- 2024年秋季新人教PEP版3年级上册英语全册课件(新版教材)
- 第一单元第二节 改造家庭网络(第二课时)教案2024-2025学年川教版(2024)信息科技 七年级上册
- 陕煤集团笔试题库及答案
- 33 《鱼我所欲也》对比阅读-2024-2025中考语文文言文阅读专项训练(含答案)
评论
0/150
提交评论