2024-2025学年河北省邯郸市鸡泽县数学九上开学教学质量检测模拟试题【含答案】_第1页
2024-2025学年河北省邯郸市鸡泽县数学九上开学教学质量检测模拟试题【含答案】_第2页
2024-2025学年河北省邯郸市鸡泽县数学九上开学教学质量检测模拟试题【含答案】_第3页
2024-2025学年河北省邯郸市鸡泽县数学九上开学教学质量检测模拟试题【含答案】_第4页
2024-2025学年河北省邯郸市鸡泽县数学九上开学教学质量检测模拟试题【含答案】_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共9页2024-2025学年河北省邯郸市鸡泽县数学九上开学教学质量检测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)将一张正方形纸片,按如图步骤①,②,沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是()A. B. C. D.2、(4分)小军自制的匀速直线运动遥控车模型甲、乙两车同时分别从、出发,沿直线轨道同时到达处,已知乙的速度是甲的速度的1.5倍,甲、乙两遥控车与处的距离、(米)与时间(分钟)的函数关系如图所示,则下列结论中:①的距离为120米;②乙的速度为60米/分;③的值为;④若甲、乙两遥控车的距离不少于10米时,两车信号不会产生互相干扰,则两车信号不会产生互相干扰的的取值范围是,其中正确的有()个A.1 B.2 C.3 D.43、(4分)已知二次函数的与的部分对应值如下表:

-1

0

1

3

-3

1

3

1

下列结论:①抛物线的开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于1.其中正确的结论有()A.1个 B.2个 C.3个 D.1个4、(4分)下列式子从左至右变形不正确的是()A.= B.=C.=- D.=5、(4分)如图,在△ABC中,AB=3,AC=4,BC=1,△ABD,△ACE,△BCF都是等边三角形,下列结论中:①AB⊥AC;②四边形AEFD是平行四边形;③∠DFE=110°;④S四边形AEFD=1.正确的个数是()A.1个 B.2个C.3个 D.4个6、(4分)一次函数的图象如图所示,当时,则的取值范围是()A. B. C. D.7、(4分)如图,在Rt△ABC中,∠A=30°,BC=2,点D,E分别是直角边BC,AC的中点,则DE的长为()A.2 B.3 C.4 D.8、(4分)下列条件中,不能判定四边形是平行四边形的是()A.对角线互相平分 B.两组对边分别相等C.对角线互相垂直 D.一组对边平行,一组对角相等二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在单位为1的方格纸上,……,都是斜边在轴上,斜边长分别为2,4,6……的等腰直角三角形,若的顶点坐标分别为,则依图中所示规律,的坐标为__________.10、(4分)如图,四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=2,则CE的长为_______11、(4分)如图,直线y=与y=x交于A(3,1)与x轴交于B(6,0),则不等式组0的解集为_____.12、(4分)已知一个多边形的内角和为540°,则这个多边形是______边形.13、(4分)本市5月份某一周毎天的最高气温统计如下表:则这组数据的众数是___.温度/℃22242629天数2131三、解答题(本大题共5个小题,共48分)14、(12分)已知直线:与轴交于点A.(1)A点的坐标为.(2)直线和:交于点B,若以O、A、B、C为顶点的四边形是平行四边形,求点C的坐标.15、(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表:本数(本)人数(人数)百分比5a0.26180.36714b880.16合计c1根据以上提供的信息,解答下列问题:(1)a=_____,b=_____,c=______;(2)补全上面的条形统计图;(3)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的有多少名?16、(8分)(1)分解因式:a2b﹣4ab2+4b1.(2)解方程.17、(10分)如图,点是ΔABC内一点,连接OB、OC,并将AB、OB、OC、AC的中点、、、依次连结,得到四边形.(1)求证:四边形是平行四边形;(2)若为的中点,OM=5,∠OBC与∠OCB互余,求DG的长度.18、(10分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AF⊥BD,CE⊥BD,垂足分别为E、F;(1)连结AE、CF,得四边形AFCE,试判断四边形AFCE是下列图形中的哪一种?①平行四边形;②菱形;③矩形;(2)请证明你的结论;B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)命题“在中,如果,那么是等边三角形”的逆命题是_____.20、(4分)如图,将直角三角形纸片置于平面直角坐标系中,已知点,将直角三角形纸片绕其右下角的顶点依次按顺时针方向旋转,第一次旋转至图位置,第二次旋转至图位置,···,则直角三角形纸片旋转次后,其直角顶点与坐标轴原点的距离为__________.21、(4分)若一个三角形的两边长为和,第三边长是方程的根,则这个三角形的周长是____.22、(4分)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.23、(4分)如图,在中,已知,,平分,交边于点E,则

___________

.二、解答题(本大题共3个小题,共30分)24、(8分)综合与实践如图,为等腰直角三角形,,点为斜边的中点,是直角三角形,.保持不动,将沿射线向左平移,平移过程中点始终在射线上,且保持直线于点,直线于点.(1)如图1,当点与点重合时,与的数量关系是__________.(2)如图2,当点在线段上时,猜想与有怎样的数量关系与位置关系,并对你的猜想结果给予证明;(3)如图3,当点在的延长线上时,连接,若,则的长为__________.25、(10分)如图,在中,,,D是AB边上一点点D与A,B不重合,连结CD,将线段CD绕点C按逆时针方向旋转得到线段CE,连结DE交BC于点F,连接BE.求证:≌;当时,求的度数.26、(12分)如图,将▱ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.(1)求证:四边形CEDF是平行四边形;(2)若AB=3,AD=4,∠A=60°,求CE的长.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

按照题目要求弄清剪去的是对角线互相垂直平分的四边形,即为菱形,又菱形的顶点在折痕上,可得正确答案;或动手操作,同样可得正确答案.【详解】解:由题意知,剪去的是对角线互相垂直平分的四边形,即为菱形,又菱形的顶点在折痕上,故选B.本题考查了图形的折叠和动手操作能力,对此类问题,在不容易想象的情况下,动手操作不失为一种解决问题的有效方法.2、C【解析】

根据题意和函数图象中的数据可以判断各个小题中的结论是否成立,从而可以解答本题.【详解】由图可得,AC的距离为120米,故①正确;乙的速度为:(60+120)÷3=60米/分,故②正确;a的值为:60÷60=1,故③错误;令[60+(120÷3)t]-60t≥10,得t≤,即若甲、乙两遥控车的距离不少于10米时,两车信号不会产生相互干扰,则两车信号不会产生相互干扰的t的取值范围是0≤t≤,故④正确;故选C.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.3、B【解析】

解:根据二次函数的图象具有对称性,由表格可知,二次函数y=ax2+bx+c有最大值,当x=时,取得最大值,可知抛物线的开口向下,故①正确;其图象的对称轴是直线x=,故②错误;当x>时,y随x的增大而减小,当x<时,y随x的增大而增大,故③正确;根据x=0时,y=1,x=﹣1时,y=﹣3,方程ax2+bx+c=0的一个根大于﹣1,小于0,则方程的另一个根大于2×=3,小于3+1=1,故④错误.故选B.考点:1、抛物线与x轴的交点;2、二次函数的性质4、A【解析】

根据分式的基本性质逐项判断即得答案.【详解】解:A、由分式的基本性质可知:≠,所以本选项符合题意;B、=,变形正确,所以本选项不符合题意;C、=-,变形正确,所以本选项不符合题意;D、,变形正确,所以本选项不符合题意.故选:A.本题考查了分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.5、C【解析】

由,得出∠BAC=90°,则①正确;由等边三角形的性质得∠DAB=∠EAC=60°,则∠DAE=110°,由SAS证得△ABC≌△DBF,得AC=DF=AE=4,同理△ABC≌△EFC(SAS),得AB=EF=AD=3,得出四边形AEFD是平行四边形,则②正确;由平行四边形的性质得∠DFE=∠DAE=110°,则③正确;∠FDA=180°-∠DFE=30°,过点作于点,,则④不正确;即可得出结果.【详解】解:∵,∴,∴∠BAC=90°,∴AB⊥AC,故①正确;∵△ABD,△ACE都是等边三角形,∴∠DAB=∠EAC=60°,又∴∠BAC=90°,∴∠DAE=110°,∵△ABD和△FBC都是等边三角形,∴BD=BA,BF=BC,∠DBF+∠FBA=∠ABC+∠ABF=60°,∴∠DBF=∠ABC,在△ABC与△DBF中,,∴△ABC≌△DBF(SAS),∴AC=DF=AE=4,同理可证:△ABC≌△EFC(SAS),∴AB=EF=AD=3,∴四边形AEFD是平行四边形,故②正确;∴∠DFE=∠DAE=110°,故③正确;∴∠FDA=180°-∠DFE=180°-110°=30°,过点作于点,∴,故④不正确;∴正确的个数是3个,故选:C.本题考查了平行四边形的判定与性质、勾股定理的逆定理、全等三角形的判定与性质、等边三角形的性质、平角、周角、平行是四边形面积的计算等知识;熟练掌握平行四边形的判定与性质是解题的关键.6、C【解析】

函数经过点(0,3)和(1,-3),根据一次函数是直线,且这个函数y随x的增大而减小,即可确定.【详解】解:函数经过点(0,3)和(1,-3),则当-3<y<3时,x的取值范围是:0<x<1.故选:C.认真体会一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.7、A【解析】

根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.【详解】解:在Rt△ABC中,∠A=30°,∴AB=2BC=4,∵D,E分别是直角边BC,AC的中点,∴,故选:D.本题考查的是三角形中位线定理、直角三角形的性质,三角形的中位线平行于第三边,且等于第三边的一半.8、C【解析】

利用平行四边形的判定可求解.【详解】A、对角线互相平分的四边形是平行四边形,故该选项不符合题意;B、两组对边分别相等的四边形是平行四边形,故该选项不符合题意;C、对角线互相垂直的四边形不一定是平行四边形,故该选项符合题意;D、一组对边平行,一组对角相等,可得另一组对角相等,由两组对角相等的四边形是平行四边形,故该选项不符合题意;故选C.本题考查了平行四边形的判定,熟练掌握平行四边形的判定是本题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

根据A3,A5,A7,A9等点的坐标,可以找到角标为奇数点都在x轴上,且正负半轴的点角标以4为周期,横坐标相差相同,从而得到结果.【详解】解:∵A3是第一与第二个等腰直角三角形的公共点,

A5(4,0)是第二与第三个等腰直角三角形的公共点,

A7(-2,0)是第三与第四个等腰直角三角形的公共点,

A9(6,0)是第四与第五个等腰直角三角形的公共点,A11(-4,0)是第五与第六个等腰直角三角形的公共点,2019=1009+1

∴是第1009个与第1010个等腰直角三角形的公共点,∵A3,A7(-2,0),A11(-4,0)2019=505×4-1

∴在x轴负半轴…,∴的横坐标为(505-1)×(-2)=-1008∴(-1008,0)本题考查的是规律,熟练掌握三角形的性质是解题的关键.10、5或【解析】分析:由菱形的性质证出△ABD是等边三角形,得出BD=AB=6,由勾股定理得出,即可得出答案.详解:∵四边形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∴△ABD是等边三角形,∴BD=AB=6,∴∴∴∵点E在AC上,∴当E在点O左边时当点E在点O右边时∴或;故答案为或.点睛:考查菱形的性质,注意分类讨论思想在数学中的应用,不要漏解.11、3<x<1【解析】

满足不等式组0<kx+b<x就是一次函数的图象位于正比例函数的图象的下方且位于x轴的上方部分x的取值范围,据此求解.【详解】解:∵与直线y=x交于点A,点B的坐标为(1,0),

∴不等式组0<kx+b<x的解集为3<x<1.

故答案为3<x<1.本题考查了一次函数与一元一次不等式的问题,满足不等式组0<kx+b<x就是一次函数的图象位于正比例函数的图象的下方且位于x轴的上方时x的取值范围是解答本题的关键.12、5.【解析】设这个多边形是n边形,由题意得,(n-2)×180°=540°,解之得,n=5.13、1.【解析】

根据众数的定义来判断即可,众数:一组数据中出现次数最多的数据叫做众数.【详解】解:数据1出现了3次,次数最多,所以这组数据的众数是1.故答案为:1.众数的定义是本题的考点,属于基础题型,熟练掌握众数的定义是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)(0,2);(2)(3,2)或(3,6)或(-3,-2).【解析】

(1),令x=0,则y=2,即可求解;(2)分AO是平行四边形的一条边、AO是平行四边形的对角线,两种情况分别求解即可.【详解】解:(1),令x=0,则y=2,则点A(0,2),故答案为(0,2);(2)联立直线l1和l2的表达式并解得:x=3,故点B(3,4),①当AO是平行四边形的一条边时,则点C(3,2)或(3,6);②当AO是平行四边形的对角线时,设点C的坐标为(a,b),点B(3,4),BC的中点和AO的中点坐标,由中点坐标公式:a+3=0,b+4=2,解得:a=-3,b=-2,故点C(-3,-2);故点C坐标为:(3,2)或(3,6)或(-3,-2).本题考查的是一次函数综合运用,涉及到平行四边形的性质,其中(2),要分类求解,避免遗漏.15、(1)10,0.28,50;(2)补图见解析;(3)该校八年级学生课外阅读7本及以上的有528名.【解析】

(1)根据统计图和表格中的数据可以得到a、b、c的值;(2)根据(1)中a的值,可以将条形统计图补充完整;(3)根据统计图中的数据可以求得该校八年级学生课外阅读7本及以上的有多少名.【详解】解:(1)本次调查的学生有:18÷0.36=50(人),a=50×0.2=10,b=14÷50=0.28,c=50,故答案为:10、0.28、50;(2)由(1)知,a=10,补全的条形统计图如图所示;(3)∵1200×(0.28+0.16)=528(名),∴该校八年级学生课外阅读7本及以上的有528名.本题考查条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.16、(1)b(a﹣2b)2;(2)x=-2【解析】

(1)运用提公因式法与公式法进行因式分解即可;(2)解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.【详解】解:(1);(2)去分母,得,解得,经检验:是原方程的解.本题主要考查了因式分解以及解分式方程,解分式方程时,一定要检验.17、(1)见解析;(2)1.【解析】

(1)根据三角形的中位线性质求出DG∥BC,EF∥BC,DG=BC,EF=BC,求出DG∥EF,DG=EF,根据平行四边形的判定得出即可;

(2)求出∠BOC=90°,根据直角三角形的斜边上中线性质得出EF=2OM,即可求出答案.【详解】(1)证明:∵点D、E、F、G分别是AB、OB、OC、AC的中点,∴DG∥BC,EF∥BC,DG=BC,EF=BC,∴DG∥EF,DG=EF,∴四边形DEFG是平行四边形;(2)解:由(1)知:四边形DEFG是平行四边形,∴DG=EF.∵∠OBC与∠OCB互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°.∵M为EF的中点,OM=5,∴OM=EF,即EF=2OM=2×5=1,∴DG=1.本题考查三角形的中位线性质,平行四边形的判定和性质,直角三角形斜边上中线性质等知识点,能熟练地运用定理进行推理是解题的关键.18、(1)平行四边形(2)证明见解析.【解析】

易证△ABF≌△CDE,再利用对边平行且相等得出四边形AFCE为平行四边形.【详解】解:(1)平行四边形;(2)证明:平行四边形ABCD中,AO=CO,∵AF⊥BD,CE⊥BD,∴∠AFO=∠CEO=90°,又∠AOF=∠COE,∴△ABF≌△CDE(AAS)∴AF=CE∵AF∥CE∴四边形AFCE为平行四边形.一、填空题(本大题共5个小题,每小题4分,共20分)19、如果是等边三角形,那么.【解析】

把原命题的题设与结论进行交换即可.【详解】“在中,如果,那么是等边三角形”的逆命题是“如果是等边三角形,那么”.故答案为:如果是等边三角形,那么.本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.20、【解析】

根据题意,由2019÷3=673可得,直角三角形纸片旋转2019次后图形应与图③相同,利用勾股定理与规律即可求得答案.【详解】解:由题意可知AO=3,BO=4,则AB=,∵2019÷3=673,则直角三角形纸片旋转次后,其直角顶点与坐标轴原点的距离为:673×(3+4+5)=8076.故答案为8076.本题主要考查勾股定理,图形规律题,解此题的关键在于根据题意准确找到图形的变化规律,利用勾股定理求得边长进行解答即可.21、2【解析】

先解方程求得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:解方程得第三边的边长为2或1.第三边的边长,第三边的边长为1,这个三角形的周长是.故答案为2.本题考查了一元二次方程的解法和三角形的三边关系定理.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.22、1.【解析】利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解:∵BD⊥CD,BD=4,CD=3,∴.∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC.∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC.又∵AD=6,∴四边形EFGH的周长=6+5=1.23、1【解析】

由和平分,可证,从而可知为等腰三角形,则,由,,即可求出.【详解】解:中,AD//BC,平分故答案为1.本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.二、解答题(本大题共3个小题,共30分)24、(1);(2),,见解析;(3)【解析】

(1)根据等腰直角三角形的性质证明OA=OC,∠A=∠C,然后证明≌即可得到OE=OF;(2)根据等腰直角三角形的性质证明OA=OB,∠A=∠OBF,利用矩形的判定证明PEBF是矩形,从而得到BF=AE,于是可证明≌,即可得到,;(3)同(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论