标准解读

GB/T 44371-2024 是一项针对液氮温区下Bi-2223超导带材的临界弯曲直径测量的标准。该标准规定了在特定低温环境下(液氮温度,约-196°C),如何测定Bi-2223超导材料带材能够承受的最大弯曲程度而不损失其超导性能的量化指标,即临界弯曲直径。

标准内容概览

  1. 范围:明确了标准适用的对象为Bi-2223超导带材,以及测试环境为液氮温区,旨在为这类超导材料的机械性能评估提供统一的测试方法。

  2. 规范性引用文件:列出了执行该标准时需要参考的其他相关国家标准或国际标准,确保测试方法的准确性和可比性。

  3. 术语和定义:对临界弯曲直径、Bi-2223超导带材等关键术语进行了明确界定,便于读者理解。

  4. 试验设备与试样制备:详细说明了进行测试所需的仪器设备要求及试样选取、制备的具体步骤,包括试样的尺寸、形状以及如何在低温环境下保持其状态稳定。

  5. 试验条件:规定了测试过程中应控制的环境参数,如液氮温度的稳定维持,以及避免外界因素干扰测试结果的措施。

  6. 试验方法:阐述了具体的测试操作流程,包括如何施加弯曲力、如何测量弯曲直径、数据记录等,确保测试过程标准化、可重复。

  7. 数据处理与结果判定:提供了数据处理规则,如计算临界弯曲直径的方法,以及如何根据测试结果判断超导带材的机械性能是否满足要求。

  8. 试验报告:要求测试结束后需编制详细的试验报告,包含测试条件、所用设备、试样信息、测试结果及必要的数据分析,以便于结果的交流与追溯。

重要性

该标准的实施有助于统一行业内的测试标准,提高Bi-2223超导带材性能评价的一致性和可靠性,对于超导材料的研发、生产和应用具有重要意义。它不仅有助于材料科学家和工程师优化超导带材的设计与制造工艺,还为超导技术在电力传输、磁体技术等领域中的实际应用提供了重要的质量控制依据。


如需获取更多详尽信息,请直接参考下方经官方授权发布的权威标准文档。

....

查看全部

  • 即将实施
  • 暂未开始实施
  • 2024-08-23 颁布
  • 2025-03-01 实施
©正版授权
GB/T 44371-2024临界弯曲直径测量液氮温区Bi-2223超导带材的临界弯曲直径测量_第1页
GB/T 44371-2024临界弯曲直径测量液氮温区Bi-2223超导带材的临界弯曲直径测量_第2页
GB/T 44371-2024临界弯曲直径测量液氮温区Bi-2223超导带材的临界弯曲直径测量_第3页
GB/T 44371-2024临界弯曲直径测量液氮温区Bi-2223超导带材的临界弯曲直径测量_第4页
GB/T 44371-2024临界弯曲直径测量液氮温区Bi-2223超导带材的临界弯曲直径测量_第5页
免费预览已结束,剩余19页可下载查看

下载本文档

免费下载试读页

文档简介

ICS

29.050;77.040.01

CCS

H62;H21

中华人民共和国国家标准

GB/T44371—2024

临界弯曲直径测量

液氮温区Bi-2223超导带材的

临界弯曲直径测量

Criticalbendingdiametermeasurement—

CriticalbendingdiametermeasurementofBi-2223

superconductingwiresinliquidnitrogentemperature

2024-08-23发布2025-03-01实施

国家市场监督管理总局发布

国家标准化管理委员会

GB/T44371—2024

目次

前言

·····································································································

引言

·····································································································

1

范围

··································································································

1

2

规范性引用文件

······················································································

1

3

术语和定义

···························································································

1

4

原理

··································································································

2

5

测量装置

······························································································

2

5.1

概述

······························································································

2

5.2

测量组件

·························································································

2

5.3

U﹘I特性测量系统

··············································································

3

6

样品准备和安装

······················································································

3

6.1

样品尺寸要求

····················································································

3

6.2

样品的安装

······················································································

4

7

测量步骤

······························································································

4

7.1

初始临界电流测量

···············································································

4

7.2

弯曲状态下临界电流测量

········································································

4

7.3

临界弯曲直径测定

···············································································

5

7.4

多次冷热循环的影响(可选)

···································································

5

8

结果计算

······························································································

5

8.1

临界电流计算

····················································································

5

8.2

n﹘值计算(可选)

···············································································

6

8.3

临界弯曲直径计算

···············································································

6

8.4

测量不确定度

····················································································

6

9

测量报告

······························································································

7

9.1

被测样品详情

····················································································

7

9.2

测量条件

·························································································

7

9.4

多次冷热循环对Ic的影响(可选)

······························································

7

9.5

其他信息

·························································································

7

附录A(资料性)一种临界弯曲直径测量组件及其使用示例

········································

8

附录B(资料性)不确定度评定

·····································································

13

参考文献

································································································

17

GB/T44371—2024

前言

本文件按照GB/T1.1—2020《标准化工作导则第1部分:标准化文件的结构和起草规则》的规

定起草。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别专利的责任。

本文件由中国科学院提出。

本文件由全国超导标准化技术委员会(SAC/TC265)归口。

本文件起草单位:中国科学院电工研究所、中国科学院物理研究所、中国科学院合肥物质科学研究

院、清华大学、华中科技大学、华北电力大学、苏州新材料研究所有限公司、广东电网有限责任公司、

上海电缆研究所有限公司、中国电力科学研究院有限公司。

本文件主要起草人:张国民、张东、杜晓纪、靖立伟、史越、杨立红、顾晨、郑金星、石晶、

皮伟、王玉山、宋萌、宗曦华、丘明、吴奕龙、贾士奇。

GB/T44371—2024

引言

高温超导体在超导电力、超导磁体、超导磁悬浮等多个领域具有广阔的应用前景。目前,实用高温

超导材料主要为Bi系和Y系。其中,Bi﹘2223带材具备良好超导性能且能制备成长带,是第一代实用高

温超导带材。在高场磁体、超导电缆、超导变压器等应用装置中,超导带材均需要绕制成线圈或者螺旋

通电导体形式,不可避免地发生弯曲。高温超导体为陶瓷氧化物材料,机械性能较差,弯曲会导致超导

带材临界电流下降。超导带材存在临界弯曲直径,当弯曲直径小于临界弯曲直径时,其临界电流大幅下

降(如下降到初始值的95%或更低)。所以,在超导装置设计中需要确定临界弯曲直径的大小。

目前,虽然对高温超导体的临界电流建立了一些测量标准,如GB/T18502—2018和

GB/T42472—2023,但对于高温超导带材的临界弯曲直径的测量尚无标准。

本文件基于现有临界电流测量标准,描述液氮温区Bi﹘2223带材的临界弯曲直径的测量方法,为超

导应用工程技术人员提供指导。

GB/T44371—2024

临界弯曲直径测量

液氮温区Bi-2223超导带材的

临界弯曲直径测量

1范围

本文件描述了在液氮温区Bi﹘2223超导带材临界弯曲直径的测量方法。

本文件适用于矩形截面、银/银合金包套且带材临界电流小于300A(77K,自场,1μV/cm)的Bi﹘

2223超导带材样品。

2规范性引用文件

下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文

件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用

于本文件。

GB/T2900.100—2017电工术语

超导电性

GB/T18502—2018临界电流测量

银和/或银合金包套Bi﹘2212和Bi﹘2223氧化物超导体的直流临

界电流

GB/T42472—2023临界电流测量

银包套Bi﹘2

温馨提示

  • 1. 本站所提供的标准文本仅供个人学习、研究之用,未经授权,严禁复制、发行、汇编、翻译或网络传播等,侵权必究。
  • 2. 本站所提供的标准均为PDF格式电子版文本(可阅读打印),因数字商品的特殊性,一经售出,不提供退换货服务。
  • 3. 标准文档要求电子版与印刷版保持一致,所以下载的文档中可能包含空白页,非文档质量问题。

评论

0/150

提交评论