版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专升本高等数学一(函数、极限与连续)模拟试卷1(共6套)(共144题)专升本高等数学一(函数、极限与连续)模拟试卷第1套一、判断题(本题共1题,每题1.0分,共1分。)1、当x→0时,sin2x与x2是等价无穷小.()A、正确B、错误标准答案:A知识点解析:由等价无穷小的定义,该命题正确二、选择题(本题共2题,每题1.0分,共2分。)2、若f(x)=则f(x)=________.A、-1B、0C、1D、不存在标准答案:D知识点解析:,左极限、右极限虽然存在但不相等,因此f(x)不存在.3、=________.A、1B、0C、∞D、不存在标准答案:D知识点解析:根据题意,,右极限不存在,因此不存在.三、填空题(本题共5题,每题1.0分,共5分。)4、若=e4,则k=________.标准答案:2.知识点解析:=e2k=e4,得到k=2.5、已知,则k=________.标准答案:6.知识点解析:因此k=6.6、设函数f(x)=在x=0处连续,则常数k=________.标准答案:1.知识点解析:因为函数f(x)在x=0连续,所以f(x)=f(0).=1+0=1,f(0)=k,因此,k=1.7、设函数f(x)=当a=________时,f(x)在(-∞,+∞)内连续.标准答案:0.知识点解析:显然,当x>0时,f(x)=xcosx;当x<0时,f(x)=a+x2连续;若x=0时,f(x)也连续,则f(x)在(-∞,+∞)内连续.为此,需要=f(0).而f(0)=,因此,a=0.8、设f(x)=,则f(x)的间断点个数为________.标准答案:1.知识点解析:根据题意,f(x)可能的间断点为x=0和x=1.四、简单解答题(本题共15题,每题1.0分,共15分。)9、求函数y=+1的反函数.标准答案:函数y=+1的定义域是D=[0,+∞),值域是R=[1,+∞).由y=+1,可解得x=(y-1)2,再将x、y互换,即得所求的反函数为y=(x-1)2,x∈[1,+∞).知识点解析:暂无解析10、讨论函数f(x)=1/x在区间(0,1),(1,2),[2,+∞)的有界性.标准答案:在(0,1)内,f(x)没有上界,有下界,数1就是f(x)的一个下界.从而,f(x)在区间(0,1)内是无界的,因为不存在这样的正数M,使|1/x|≤M对于(0,1)内的一切x都成立.在(1,2)内,f(x)有界,可取M=1,而使|1/x|<1对一切x∈(1,2)都成立.在[2,+∞)内,f(x)有界,可取M=1/2,而使对一切x∈[2,+∞)都成立.知识点解析:暂无解析11、求函数的定义域.标准答案:根据题意,有解不等式组,得,从而,函数的定义域为(1,2](或{x|1<x≤2}).知识点解析:暂无解析12、已知函数f(x)的定义域为[1,3],求函数f(x+1)的定义域.标准答案:根据题意,有1≤x+1≤3,从而,可得函数f(x+1)的定义域为[0,2].知识点解析:暂无解析13、设,则f(1/x)=________.标准答案:将函数中的x用1/x代替,得到知识点解析:暂无解析14、设,则f(g(x))=________,g(f(x))=________.标准答案:根据题意,由f(x)的表达式,得到再由g(x)的表达式,|g(x)|<1|x|≤3;|g(x)|≥1|x|>3.从而,有由g(x)的表达式,得到再由f(x)的表达式,|f(x)|≤3x∈(-∞,+∞);|f(x)|>3.从而,有g(f(x))=0.知识点解析:暂无解析15、求极限标准答案:知识点解析:暂无解析16、求极限标准答案:知识点解析:暂无解析17、求极限标准答案:知识点解析:暂无解析18、求极限标准答案:=e-1=1/e.知识点解析:暂无解析19、求极限标准答案:根据无穷小与有界函数的乘积为无穷小,有知识点解析:暂无解析20、求极限标准答案:知识点解析:暂无解析21、求极限标准答案:知识点解析:暂无解析设函数22、求出函数f(x)的定义域;标准答案:当x>1时,在x=3处无定义,因此函数f(x)的定义域为(-∞,3)∪(3,+∞).知识点解析:暂无解析23、求出f(x)的间断点并判断类型.标准答案:函数f(x)可能的间断点为x=0,x=1和x=3,下面分别进行讨论.当x=0时,由于因此,x=0为函数f(x)的第一类间断点(跳跃间断点);当x=1时,因此x=1为函数f(x)的连续点;当x=3时,函数f(x)无定义,且,因此,x=3为函数f(x)的第二类间断点(无穷间断点).知识点解析:暂无解析专升本高等数学一(函数、极限与连续)模拟试卷第2套一、选择题(本题共2题,每题1.0分,共2分。)1、下列各组函数中,是相同函数的是________.A、f(x)=lnx2和g(x)=2lnxB、f(x)=|x|和g(x)=C、f(x)=x和g(x)=()2D、f(x)=|x|和g(x)=x标准答案:B知识点解析:A不相同.Df={x|x≠0),Dg={x|x>0},两个函数的定义域不同,因此f(x)与g(x)不相同;C不相同.Df=(-∞,+∞),Dg={x|x≥0},两个函数的定义域不同,因此f(x)与g(x)不相同;D不相同.两个函数的定义域均为(-∞,+∞),但对应法则不同,因此f(x)与g(x)不相同。2、设x→a时,f1(x)和f2(x)都是无穷小,则下列结论中不一定正确的是________.A、f1(x)+f2(x)是无穷小B、f1(x)·f2(x)是无穷小C、f(x)=是无穷小D、f1是无穷小标准答案:D知识点解析:A,根据有限个无穷小的和为无穷小,正确;B,根据有限个无穷小的乘积为无穷小,正确;C,由于,即x→a时,f(x)为无穷小,正确;D,x→a时,f1为“00”未定式,极限不一定为零,因此,不一定为无穷小.二、填空题(本题共4题,每题1.0分,共4分。)3、设函数f(x)=在点x=0连续,则a=________.标准答案:1/2.知识点解析:因为函数f(x)在x=0连续,所以从而,a=1-a,a=1/2.4、x=0是函数y=sin的第________类间断点.标准答案:二.知识点解析:由于不存在,因此x=0是函数y=sin的第二类间断点.5、函数的间断点为________.标准答案:x=0和x=2知识点解析:函数为初等函数,初等函数的间断点为不在其定义域内的点,显然,当x=0和x=2时,该函数无定义.因此,x=0和x=2即为函数的间断点.6、x=1为函数的________间断点.标准答案:可去.知识点解析:显然,函数在x=1处无定义,且,因此x=1为函数的第一类间断点(可去间断点).三、简单解答题(本题共17题,每题1.0分,共17分。)7、设函数f(x)=x2+1,g(x)=,求f[g(x)].标准答案:根据题意,Df=(-∞,+∞),Dg=[1,+∞),Rg=[0,+∞),Df∩Rg=Rg≠Φ,从而,有f[g(x)]=[g(x)]2+1=(x-1)+1=x,即,f[g(x)]=x,x∈[1,+∞).知识点解析:暂无解析8、讨论函数y=1/x的单调性.标准答案:y=1/x在(-∞,0),(0,+∞)内都单调减少,但在定义域(-∞,0)∪(0,+∞)内不具有单调性.知识点解析:暂无解析9、求函数y=ln[ln(lnx)]的定义域.标准答案:根据题意,有解不等式组,得,从而,函数的定义域为(e,+∞).知识点解析:暂无解析10、函数y=sgnx=的值域为________.标准答案:此函数为分段函数,分段函数的值域为各段值域的并集,因此函数的值域为{1,0,1}.知识点解析:暂无解析11、已知,则f(x)=________.标准答案:由于,因此f(x)=x2+2.知识点解析:暂无解析计算下列极限.12、标准答案:知识点解析:暂无解析13、标准答案:知识点解析:暂无解析14、标准答案:知识点解析:暂无解析15、标准答案:知识点解析:暂无解析16、若,则a=________,b=________.标准答案:从而,a=1,b=-5.知识点解析:暂无解析17、求极限标准答案:知识点解析:暂无解析18、求极限标准答案:=e-2.知识点解析:暂无解析19、求极限标准答案:知识点解析:暂无解析20、设x→0时,ln(1+xa)与x+为等价无穷小,求a的值.标准答案:根据题意,有因此,a=1/2.知识点解析:暂无解析21、求极限标准答案:知识点解析:暂无解析22、求极限标准答案:知识点解析:暂无解析23、若f(x)=在定义域上连续,试求常数c.标准答案:根据题意,C>0.函数f(x)可以化为如下形式:由于函数f(x)在定义域上连续,因此f(x)在x=-c和x=c处均连续.考虑x=c,则可以求得c=2(考虑x=-c也能得到同样的结论).知识点解析:暂无解析专升本高等数学一(函数、极限与连续)模拟试卷第3套一、选择题(本题共10题,每题1.0分,共10分。)1、函数y=的定义域是()A、x≥3B、x≤一2C、[一3,4]D、{x|一3≤x≤一2}∪{x|3≤x≤4}标准答案:D知识点解析:由题意知x2一x一6≥0,解得x≤一2或x≥3,一1≤≤1,解得一3≤x≤4,取两者交集得{x|一3≤x≤一2}∪{x|3≤x≤4},故选D.2、函数y=f(x)的图像关于原点对称,则下列关系式成立的是()A、f(x)+f(一x)=0B、f(x)一f(一x)=0C、f(x)+f-1(x)=0D、f(x)一f-1(x)=0标准答案:A知识点解析:因为y=f(x)的图像关于原点对称,所以f(一x)=一f(x),即f(x)+f(一x)=0,故选A.3、设函数f(x)=1+3x的反函数为g(x),则g(10)=()A、一2B、一1C、2D、3标准答案:C知识点解析:f(x)=1+3x的反函数为g(x),从而g(x)的定义域即为f(x)的值域,所以由1+3x=10=x=2,g(10)=2.4、设函数f(x)在(一1,0)∪(0,1)内有定义,如果极限存在,则下列结论中正确的是()A、存在正数δ,f(x)在(一δ,δ)内有界B、存在正数δ,f(x)在(一δ,0)∪(0,δ)内有界C、f(x)在(一1,1)内有界D、f(x)在(一1,0)∪(0,1)内有界标准答案:B知识点解析:由函数的定义域为(一1,0)∪(0,1),从而函数的有界性只能在定义域(-1,0)∪(0,1)内考虑,由于极限存在,由函数极限局部有界性可知存在正数δ,使f(x)在(一δ,0)∪(0,δ)内有界.5、下列极限中正确的是()A、
B、
C、
D、
标准答案:C知识点解析:因为第一重要极限的结构形式为=1,式中“□”可以是自变量x,也可以是x的函数,而□→0,表示当x→x0(x→∞)时,必有□→0,即□是当x→x0(x→∞)时的无穷小量,所以A、B、D不正确,故选C.6、=()A、eB、1C、e-1D、一e标准答案:C知识点解析:=e-1.7、当x→0时,与x等价的无穷小量是()A、B、ln(1+x)C、D、x2(x+1)标准答案:B知识点解析:对于选项A,是比x低阶的无穷小;对于选项B,=1,故x→0时ln(1+x)是与x等价的无穷小;对于选项C,=是与x同阶但非等价的无穷小;对于选项D,=0,故x→0时x2(x+1)是比x高阶的无穷小.8、下列极限存在的是()A、
B、
C、
D、
标准答案:B知识点解析:对于选项A,当x→0-时,震荡无极限,当x→0+时,也震荡无极限;对于选项C,当x→1时2x一2→0,→∞极限不存在;对于选项D,当n→∞时n(n+1)→∞极限不存在;而=1,故选B.9、设f(x)=为连续函数,则a=()A、0B、1C、2D、任意值标准答案:B知识点解析:f(x)为连续函数,则f(x)在x=2处连续,故有=1=a.10、函数f(x)=xcos在点x=0处为()A、跳跃间断点B、第二类间断点C、可去间断点D、无穷间断点标准答案:C知识点解析:=0,所以f(x)在x=0处为可去间断点,故选C.二、填空题(本题共7题,每题1.0分,共7分。)11、函数y=的反函数是_________.标准答案:y=知识点解析:x≤0时,y=x2+1,值域为[1,+∞),其反函数为y=一,x∈[1,+∞),x>0时,y=,值域为(一2,1),其反函数为y=,x∈(一2,1),所以原函数的反函数为y=12、设f(x)=则f[f(x)=_________.标准答案:xundefined知识点解析:f(x)=[*],将x=f(x)代入得:f[f(x)]=[*]=x.13、=________.标准答案:0知识点解析:x→∞时,sin→0,|1-cosx|≤2,所以=0.14、=________.标准答案:x知识点解析:=x.15、当x→0+时,是x_________阶的无穷小.标准答案:低知识点解析:是x的低阶无穷小.16、设f(x)=,则f(x)的间断点为x=_________.标准答案:0知识点解析:f(x)=,可知f(x)在x=0处无意义,故其间断点为x=0.17、函数y=的间断点是x=________,其为第________类间断点.标准答案:0,二知识点解析:=+∞,故x=0为函数的第二类间断点.三、简单解答题(本题共8题,每题1.0分,共8分。)18、求极限.标准答案:.知识点解析:暂无解析19、计算.标准答案:型,使用洛必达法则..知识点解析:暂无解析20、求极限x[ln(x+1)一lnx].标准答案:=lne=1.知识点解析:暂无解析21、求极限.标准答案:=e.知识点解析:暂无解析22、求极限.标准答案:由于x→0时,xcotx=→1,故原极限为型,所以知识点解析:暂无解析23、求极限.标准答案:=1+0=1.知识点解析:暂无解析24、设f(x)=在x=0连续,试确定A,B.标准答案:欲使f(x)在x=0处连续,应有2A=4=B+1,所以A=2,B=3.知识点解析:暂无解析25、证明方程x5+3x3一3=0在(0,1)内至少有一个根.标准答案:令f(x)=x5+3x3一3,f(0)=一3<0,f(1)=1>0,由连续函数的零点定理可知至少存在一点c∈(0,1)使得f(c)=0,即方程x5+3x3一3=0在(0,1)内至少有一个根.知识点解析:暂无解析专升本高等数学一(函数、极限与连续)模拟试卷第4套一、选择题(本题共9题,每题1.0分,共9分。)1、函数f(x)=的定义域是()A、一4≤x≤3B、一4≤x≤0C、0<x≤3D、一4<x<3标准答案:A知识点解析:由题意知定义域为两段函数定义域的并集,即[一4,3],故选A.2、函数y=sinx+的最小正周期是()A、2πB、πC、D、标准答案:A知识点解析:y=sinx+=2π,故选A.3、若=()A、kB、2kC、∞D、不存在标准答案:A知识点解析:因为数列{a2n}为数列{an}的一个子列,故=k.4、下列极限中正确的是()A、
B、
C、
D、
标准答案:D知识点解析:因为第二重要极限的结构形式为=e,式中“□”可以是自变量x,也可以是x的函数,而□→0,表示当x→x0(x→∞)时,必有□→0,即□是当x→x0(x→∞)时为无穷小量且小括号内用“+”相连时上式=e成立,所以A、B、C不正确,故选D.5、当x→0时,下列变量中为无穷小的是()A、lg|x|B、sinC、cotxD、一1标准答案:D知识点解析:x→0时,lg|x|→一∞,sin无极限,cotx→∞,一1→0,故选D.6、=()A、1B、0C、2D、标准答案:C知识点解析:(x+1)=2.7、若f(x)与g(x)在x→x0时都是无穷大,则下列极限正确的是()A、
B、
C、
D、
标准答案:D知识点解析:无穷大量乘以一个常数还是无穷大量,故选D,举反例,如令f(x)=,g(x)=,x0=0,此时A、B、C项均不成立,但若f(x)=g(x)=,x0=0,此时A、B、C项又都成立,所以A,B,C项不能确定.8、函数f(x)=在x=1处间断是由于()A、
B、
C、
D、
标准答案:D知识点解析:=1,f(1)=2,故不连续的原因是.9、下列区间中,使方程x4一x一1=0至少有一个根的区间是()A、(1,2)B、(2,3)C、(,1)D、(0,)标准答案:A知识点解析:令f(x)=x4一x一1,f(0)=-1<0,<0,f(1)=一1<0,f(2)=13>0,f(3)=77>0,在4个区间中,只有f(1)f(2)<0,由函数的连续的零点定理可知,至少存在一点ξ∈(1,2),使得f(ξ)=0,即方程x4一x-1=0至少有一个根.二、填空题(本题共7题,每题1.0分,共7分。)10、函数f(x)=的定义域是_________.标准答案:(一∞,一1)∪(一1,+∞)知识点解析:sinμ的定义域为(一∞,+∞),但中1+x≠0,即x≠一1,故函数f(x)=的定义域为(一∞,一1)∪(一1,+∞).11、函数f(x)=ln(x+)是_________函数,因而其图形关于_________对称.标准答案:奇,原点知识点解析:f(x)==-ln(x+)=一f(x),所以f(x)为奇函数,其图形关于原点对称.12、若函数f(x)的反函数图像过点(1,5),则函数y=f(x)的图像必过点_________.标准答案:(5,1)知识点解析:因为原函数和反函数图像关于y=x对称,所以原函数过(1,5),则反函数过点(5,1).13、=________.标准答案:0知识点解析:x→0+,arctan=0.14、若(cosx一b)=5,则a=________,b=________.标准答案:1,一4知识点解析:由(ex一a)=0,即a=1.又有(cosx一b)=1—b=5,故b=一4.15、若f(x)=在x=0处连续,则a=________.标准答案:0知识点解析:=0.又f(0)=a,则若f(x)在x=0连续,应有a=0.16、设f(x)=有无穷间断点x=0和可去间断点x=1,则a=________.标准答案:1知识点解析:三、简单解答题(本题共9题,每题1.0分,共9分。)17、计算.标准答案:.知识点解析:暂无解析18、求.标准答案:型,使用洛必达法则.=0.知识点解析:暂无解析19、求极限.标准答案:.知识点解析:暂无解析20、求极限(sinx+cosx).标准答案:知识点解析:暂无解析21、求极限.标准答案:此极限为型,所以知识点解析:暂无解析22、求极限.标准答案:这是“1∞”型未定式.知识点解析:暂无解析23、求极限.标准答案:原式=.知识点解析:暂无解析24、设f(x)=,求f(x)的间断点.标准答案:由题意知,使f(x)不成立的x值,均为f(x)的间断点,故sin(x一3)=0或x一3=0时f(x)无意义,则间断点为x一3=kπ(k=0,±1,±2,…).即x=3+kπ(k=0,±1,±2…).知识点解析:暂无解析25、证明方程4x=2x在区间(0,)内至少有一个实根.标准答案:令f(x)=4x一2x,f(0)=一1<0,>0,由连续函数的零点定理可知至少存在一点C∈(0,)使得f(c)=0,即方程4x=2x在(0,)内至少有一个根.知识点解析:暂无解析专升本高等数学一(函数、极限与连续)模拟试卷第5套一、选择题(本题共9题,每题1.0分,共9分。)1、函数y=的定义域是()A、[一2,3]B、[一3,3]C、(一2,一1)∪(一1,3]D、(一3,3)标准答案:C知识点解析:因为对于函数y应满足这三个不等式解的交集为一2<x<-1与一1<x≤3.所以函数的定义域为(-2,-1)∪(-1,3].2、下列函数中是奇函数的为()A、y=cos3xB、y=x2+sinxC、y=ln(x2+x4)D、y=标准答案:D知识点解析:A、C为偶函数,B为非奇非偶函数,D中y(一x)==一y(x),为奇函数,故选D.3、函数f(x)=|xsinx|ecosx,在(一∞,+∞)上是()A、有界函数B、偶函数C、单调函数D、周期函数标准答案:B知识点解析:定义域(一∞,+∞)关于原点对称,且f(一x)=|(一x)sin(一x)|ecos(-x)=|xsinx|ecosx=f(x),故函数f(x)在(一∞,+∞)上为偶函数.4、极限等于()A、2B、1C、D、0标准答案:D知识点解析:因x→∞时,→0,而sin2x是有界函数;所以由无穷小的性质知,=0.5、设=3,则a=()A、B、C、2D、不确定标准答案:A知识点解析:.6、=()A、0B、1C、∞D、不存在但不是∞标准答案:D知识点解析:不存在,故选D.7、若=5,则()A、a=一9,b=14B、a=1,b=一6C、a=一2,b=0D、a=一2,b=一5标准答案:B知识点解析:若(x2+ax+b)=0,因此4+2a+b=0,2a+b=一4,即b=一4-2a,故所以a=1,而b=一6.8、设函数f(x)=则f(x)在()A、x=0,x=1处都间断B、x=0,x=1处都连续C、x=0处间断,x=1处连续D、x=0处连续,x=1处间断标准答案:C知识点解析:因为在x=0处,,因此f(x)在x=0处间断.在x=1处,=f(1),因此,在x=1处连续,故选C.9、函数f(x)=的间断点为()A、x=一1B、x=0C、x=1D、不能确定标准答案:B知识点解析:x=0处为分段点,≠f(0),所以f(x)的间断点为x=0,故选B.二、填空题(本题共7题,每题1.0分,共7分。)10、设函数f(x)的定义域为[0,1],g(x)=lnx一1,则复合函数f[g(x)]的定义域是_________.标准答案:[e,e2]知识点解析:由函数f(x)的定义域为[0,1]知在f[g(x)]中g(x)∈[0,1],即0≤lnx一1≤11≤lnx≤2e≤x≤e2.11、设f(x)=则f{f[f(一3)]}=_________.标准答案:4知识点解析:f(一3)=0,f[f(一3)]=f(0)=2,f{f[f(一3)]}=f(2)=x2|x=2=4.12、若x→0时,(1一ax2)一1与xsinx是等价无穷小,则a=________.标准答案:一4知识点解析:=1,故a=一4.13、极限=________.标准答案:e-2知识点解析:=e-2.14、极限=________.标准答案:e-1知识点解析:=e-1.15、设f(x)=若f(x)在x=1处连续,则a=_______.标准答案:2kπ+,k=0,±1,±2,…知识点解析:由=1.且f(1)=1,所以f(x)在x=1连续,应有1=sina,所以a=2kπ+,k=0,±1,±2,….16、设f(x)=,则补充定义f(0)=________时,函数f(x)就在点x=0处连续.标准答案:1知识点解析:若f(x)在x=0处连续,则f(0)==1.三、简单解答题(本题共9题,每题1.0分,共9分。)17、设f(x)=+|x-5|,求.标准答案:.知识点解析:暂无解析18、求极限.标准答案:.知识点解析:暂无解析19、计算.标准答案:=一1.知识点解析:暂无解析20、求极限.标准答案:.知识点解析:暂无解析21、求极限.标准答案:=2.知识点解析:暂无解析22、求极限.标准答案:.知识点解析:暂无解析23、求极限(sinx)x.标准答案:此极限为0°型,所以知识点解析:暂无解析24、设f(x)=,当a,b取何值时,f(x)在(一∞,+∞)上连续.标准答案:f(x)=因为f(x)在(一∞,+∞)上连续,所以f(x)在x=1及x=一1处连续,综上所述,解得a=0,b=1.知识点解析:暂无解析25、问a、b为何值时,函数f(x)=在点x=2和x=4处均连续.标准答案:由题意知知识点解析:暂无解析专升本高等数学一(函数、极限与连续)模拟试卷第5套一、选择题(本题共2题,每题1.0分,共2分。)1、下列各组函数中,是相同函数的是________.A、f(x)=lnx2和g(x)=2lnxB、f(x)=|x|和g(x)=C、f(x)=x和g(x)=()2D、f(x)=|x|和g(x)=x标准答案:B知识点解析:A不相同.Df={x|x≠0),Dg={x|x>0},两个函数的定义域不同,因此f(x)与g(x)不相同;C不相同.Df=(-∞,+∞),Dg={x|x≥0},两个函数的定义域不同,因此f(x)与g(x)不相同;D不相同.两个函数的定义域均为(-∞,+∞),但对应法则不同,因此f(x)与g(x)不相同。2、设x→a时,f1(x)和f2(x)都是无穷小,则下列结论中不一定正确的是________.A、f1(x)+f2(x)是无穷小B、f1(x)·f2(x)是无穷小C、f(x)=是无穷小D、f1是无穷小标准答案:D知识点解析:A,根据有限个无穷小的和为无穷小,正确;B,根据有限个无穷小的乘积为无穷小,正确;C,由于,即x→a时,f(x)为无穷小,正确;D,x→a时,f1为“00”未定式,极限不一定为零,因此,不一定为无穷小.二、填空题(本题共4题,每题1.0分,共4分。)3、设函数f(x)=在点x=0连续,则a=________.标准答案:1/2.知识点解析:因为函数f(x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2031年中国窗铰链行业投资前景及策略咨询研究报告
- 2025年度终止合同协议书:二零二五终止智能物流配送服务合同
- 2025年度联合招生项目资助与奖励协议
- 2025年度环保理发店员工职业健康劳动合同
- 二零二五年度个人汽车抵押担保协议
- 2025年度银行企业存款账户综合服务合同
- 二零二五年度节日庆典活动视频短片拍摄合同
- 2025年度装修公司工人安全免责及责任界定合同
- 2025年二零二五食堂承包与食品安全培训协议
- 2025年度特种车辆驾驶员聘用协议
- 《建筑工程设计文件编制深度规定》(2022年版)
- 线下结算佣金合同模板
- 疫情物品采购合同模板
- 老年病科专业知识考核试卷
- 病例报告表(CRF)模板
- 2024年重庆市中考数学试卷(AB合卷)【附答案】
- 2024届高考语文作文备考:立足材料打造分论点 教学设计
- 幼儿园大班数学练习题100道及答案解析
- 2024年四川省德阳市中考道德与法治试卷(含答案逐题解析)
- 施工现场水电费协议
- SH/T 3046-2024 石油化工立式圆筒形钢制焊接储罐设计规范(正式版)
评论
0/150
提交评论