版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省苏州市昆山市数学八年级第一学期期末学业水平测试模拟试题测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.A、B两地相距千米,一艘轮船从A地顺流行至B地,又立即从B地逆流返回A地,共用9小时,已知水流速度为千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程为()A. B.C. D.2.已知,,则与的大小关系为()A. B. C. D.不能确定3.如图,已知点的坐标为,点的坐标为,点在直线上运动,当最小时,点的坐标为()A. B. C. D.4.小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段、分别表示小敏、小聪离B地的距离与已用时间之间的关系,则小敏、小聪行走的速度分别是A.和 B.和C.和 D.和5.如图,在△ABC中,CB=AC,DE垂直平分AC,垂足为E,交BC于点D,若∠B=70°,则∠BAD=()A.30° B.40° C.50° D.60°6.某工厂计划x天内生产120件零件,由于采用新技术,每天增加生产3件,因此提前2天完成计划,列方程为()A. B.C. D.7.尺规作图作的平分线方法如下:以为圆心,任意长为半径画弧交、于、,再分别以点、为圆心,以大于长为半径画弧,两弧交于点,作射线由作法得的根据是()A.SAS B.ASA C.AAS D.SSS8.四边形ABCD中,若∠A+∠C=180°且∠B:∠C:∠D=3:5:6,则∠A为().A.80° B.70° C.60° D.50°9.小明同学把自己的一副三角板(两个直角三角形)按如图所示的位置将相等的边叠放在一起,则α的度数()A.135° B.120° C.105° D.75°10.下列式子中,计算结果等于a9的是()A.a3+a6B.a1.aC.(a6)3D.a12÷a211.如图,不是轴对称图形的是()A. B. C. D.12.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()A. B. C. D.二、填空题(每题4分,共24分)13.要使分式有意义,则x应满足条件____.14.若分式的值为零,则x的值为_____.15.已知am=2,an=3,那么a2m+n=________.16.计算的结果等于_______.17.如图,在△ABC中,AB=AC,DE垂直平分AB于点E,交AC于点D,若△ABC的周长为26cm,BC=6cm,则△BCD的周长是__________cm.18.如图,正方形ABCD,以CD为边向正方形内作等边△DEC,则∠EAB=______________º.三、解答题(共78分)19.(8分)化简:(1);(2).20.(8分)如图,在坐标平面内,点O是坐标原点,A(0,6),B(2,0),且∠OBA=60°,将△OAB沿直线AB翻折,得到△CAB,点O与点C对应.(1)求点C的坐标:(2)动点P从点O出发,以2个单位长度/秒的速度沿线段OA向终点A运动,设△POB的面积为S(S≠0),点P的运动时间为t秒,求S与t的关系式,并直接写出t的取值范围.21.(8分)欢欢与乐乐两人共同计算,欢欢抄错为,得到的结果为;乐乐抄错为,得到的结果为.式子中的a、b的值各是多少?请计算出原题的正确答案.22.(10分)在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?23.(10分)如图,在等腰中,,,是边上的中点,点,分别是边,上的动点,点从顶点沿方向作匀速运动,点从从顶点沿方向同时出发,且它们的运动速度相同,连接,.(1)求证:.(2)判断线段与的位置及数量关系,并说明理由.(3)在运动过程中,与的面积之和是否为定值?若是,请求出这个定值;若不是,请说明理由.24.(10分)(1)已知a+b=7,ab=10,求a2+b2,(a-b)2的值;(2)已知3x+2·5x+2=153x-4,求(2x-1)2-4x2+7的值.25.(12分)(1)计算:;(2)先化简,再求值:,其中,.26.如图,正比例函数的图象和一次函数的图象交于点,点B为一次函数的图象与x轴负半轴交点,且的面积为1.求这两个函数的解析式.根据图象,写出当时,自变量x的取值范围.
参考答案一、选择题(每题4分,共48分)1、A【分析】分别表示出顺水航行时间和逆水航行的时间,根据“顺水航行时间+逆水航行时间=9”列方程即可求解.【详解】解:设该轮船在静水中的速度为x千米/时,列方程得.故选:A【点睛】本题考查了列分式方程解应用题,熟知“顺水速=静水速+水速”,“逆水速=静水速-水速”是解题关键.2、A【分析】通过“分母有理化”对进行化简,进而比较大小,即可得到答案.【详解】∵=,,∴.故选A.【点睛】本题主要考查二次根式的化简,掌握二次根式的分母有理化,是解题的关键.3、A【分析】连接AB,与直线的交点就是点C,此时最小,先求出直线AB的解析式,然后求出点C的坐标即可【详解】解:根据题意,如图,连接AB,与直线的交点就是点C,则此时最小,设点A、B所在的直线为,则,解得:,∴,∴,解得:,∴点C的坐标为:;故选:A.【点睛】本题考查了一次函数的图形和性质,以及最短路径问题,解题的关键是正确确定点C的位置,求出直线AB的解析式,进而求出点C.4、D【解析】设小敏的速度为:m,则函数式为,y=mx+b,由已知小敏经过两点(1.6,4.8)和(2.8,0),所以得:4.8=1.6m+b,0=2.8m+b,解得:m=-4,b=11.2,小敏离B地的距离y(km)与已用时间x(h)之间的关系为:y=-4x+11.2;由实际问题得小敏的速度为4km/h;设小聪的速度为:n,则函数图象过原点则函数式为,y=nx,由已知经过点(1.6,4.8),所以得:4.8=1.6n,则n=3,即小聪的速度为3km/h,故选D.5、A【分析】根据等腰三角形的性质和线段垂直平分线的性质即可得到结论.【详解】解:∵CB=CA,∴∠B=∠BAC=70°,∴∠C=180°﹣70°﹣70°=40°.∵DE垂直平分AC,∴∠DAC=∠C=40°,∴∠BAD=30°.故选:A.【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,熟练掌握线段垂直平分线的性质是解题的关键.6、D【分析】关键描述语为:“每天增加生产1件”;等量关系为:原计划的工效=实际的工效−1.【详解】原计划每天能生产零件件,采用新技术后提前两天即(x﹣2)天完成,所以每天能生产件,根据相等关系可列出方程.故选:D.【点睛】本题考查了分式方程的实际应用,找到关键描述语,找到合适的等量关系是解决问题的关键.7、D【解析】解:以O为圆心,任意长为半径画弧交OA,OB于C,D,即OC=OD;以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,即CP=DP;再有公共边OP,根据“SSS”即得△OCP≌△ODP.故选D.8、A【解析】试题分析:由∠A+∠C=180°根据四边形的内角和定理可得∠B+∠D=180°,再设∠B=3x°,∠C=5x°,∠D=6x°,先列方程求得x的值,即可求得∠C的度数,从而可以求得结果.∵∠B:∠C:∠D=3:5:6∴设∠B=3x°,∠C=5x°,∠D=6x°∵∠A+∠C=180°∴∠B+∠D=180°∴3x+6x=180,解得x=20∴∠C=100°∴∠A=180°-100°=80°故选A.考点:四边形的内角和定理点评:四边形的内角和定理是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.9、C【分析】根据三角形的一个外角等于和它不相邻的两个内角的和计算,得到答案.【详解】由题意得,∠A=60°,∠ABD=90°﹣45°=45°,∴α=45°+60°=105°,故选:C.【点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.10、B【分析】根据同底数幂的运算法则对各项进行计算即可.【详解】A.a3+a6=a3+a6,错误;B.,正确;C.,错误;D.,错误;故答案为:B.【点睛】本题考查了同底数幂的运算,掌握同底数幂的运算法则是解题的关键.11、A【分析】根据轴对称图形的概念对各选项进行分析即可得出结论.【详解】A.不是轴对称图形,故本选项正确;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.是轴对称图形,故本选项错误.故选:A.【点睛】本题考查了轴对称图形的识别,掌握轴对称图形的概念是解答本题的关键.12、B【解析】根据小刚行驶的路程与时间的关系,确定出图象即可.【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选B.【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.二、填空题(每题4分,共24分)13、x≠1.【分析】当分式的分母不为零时,分式有意义,即x−1≠2.【详解】当x﹣1≠2时,分式有意义,∴x≠1.故答案为:x≠1.【点睛】本题考查分式有意义的条件;熟练掌握分式分母不为零时,分式有意义是解题的关键.14、1【分析】由题意根据分式的值为0的条件是分子为0,分母不能为0,据此可以解答本题.【详解】解:,则x﹣1=0,x+1≠0,解得x=1.故若分式的值为零,则x的值为1.故答案为:1.【点睛】本题考查分式的值为0的条件,注意掌握分式为0,分母不能为0这一条件.15、12【分析】逆用同底数幂的乘法法则和幂的乘方法则计算即可.【详解】∵am=2,an=3,∴a2m+n=a2m×an=×an=4×3=12.故答案为12.【点睛】本题考查了幂的乘方及同底数幂的乘法的逆运算,熟练掌握幂的乘方和同底数幂的乘法运算法则是解答本题的关键,即,特别注意运算过程中指数的变化规律,灵活运用法则的逆运算进行计算,培养学生的逆向思维意识.16、2【分析】先套用平方差公式,再根据二次根式的性质计算可得.【详解】原式=()2﹣()2=5﹣3=2,考点:二次根式的混合运算17、1【分析】根据线段垂直平分线性质求出AD=BD,根据△ABC周长求出AC,推出△BCD的周长为BC+CD+BD=BC+AC,代入求出即可.【详解】∵DE垂直平分AB,
∴AD=BD,
∵AB=AC,△ABC的周长为26,BC=6,
∴AB=AC=(26-6)÷2=10,
∴△BCD的周长为BC+CD+BD=BC+CD+AD=BC+AC=6+10=1.故答案为:1.【点睛】本题考查了线段垂直平分线性质和等腰三角形的应用,解此题的关键是求出AC长和得出△BCD的周长为BC+AC,注意:线段垂直平分线上的点到线段两个端点的距离相等.18、15.【解析】根据正方形ABCD,得到AD=CD,∠ADC=90°,根据等边△CDE,得到CD=DE,∠CDE=60°,推出AD=DE,得出∠DAE=∠AED,根据三角形的内角和定理求出∠DAE,从而可得∠EAB的度数.【详解】∵正方形ABCD,∴AD=CD,∠ADC=∠DAB=90°,∵等边△CDE,∴CD=DE,∠CDE=60°,∴∠ADE=90°-60°=30°,∴AD=DE,∴∠DAE=∠AED=(180°-∠ADE)=75°;∴∠EAB=90°-75°=15°.故答案为:15°【点睛】本题主要考查对正方形的性质,等边三角形的性质,等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.三、解答题(共78分)19、(1);(2)【分析】(1)利用完全平方公式和平方差公式展开,合并同类项即可;(2)利用多项式除以单项式进行运算,同时利用完全平方公式展开,合并同类项即可.【详解】(1);(2).【点睛】本题是整式的混合运算,考查了完全平方公式,平方差公式,多项式除以单项式,熟练掌握整式混合运算的法则是解题的关键.20、(1)C(3,3);(2)S=2,0<t≤3【分析】(1)图形翻折后对应边长度不变,通过直角三角形中,30°所对的直角边等于斜边一半,依次得出C的坐标.(2),的距离为,可得;另,P的速度为2个单位长度/秒,则总的时间为.【详解】解:(1)连接OC,过C点作CH⊥x轴于H点.∵折叠,∴OA=AC,∠OBA=∠CBA=60°,OB=CB,∠CBH=60°∴是等边三角形∴∠BCH=30°∴,∵OC=OA=6,∠COH=30°∴.∴;(2)∵点P的运动时间为t秒,∴OP=2t,∴.∵点P以2个单位长度/秒的速度沿线段OA向终点A运动,∴t的取值范围为.【点睛】理解图形翻折后的特点,利用锐角为30°的直角三角形性质定理为解题的关键.21、(1),;(2)
【分析】根据由于欢欢抄错了第一个多项式中的a符号,得出的结果为,可知,于是;再根据乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为,可知常数项是,可知,可得到,解关于的方程组即可求出a、b的值;把a、b的值代入原式求出整式乘法的正确结果.【详解】根据题意可知,由于欢欢抄错了第一个多项式中的a的符号,得到的结果为,那么,可得乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为,可知即,可得,解关于的方程组,可得,;正确的式子:【点睛】本题主要是考查多项式的乘法,正确利用法则是正确解决问题的关键.22、(1)见解析;(2)见解析.【解析】(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;
(2)根据平移的性质结合图形解答.【详解】(1)△A1B1C1如图所示:(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).23、(1)证明见解析;(2)DE⊥DF,DE=DF,证明见解析;(3)△BDE与△CDF的面积之和始终是一个定值,这个定值为1.【解析】(1)由题意根据全等三角形的判定运用SAS,求证即可;(2)根据全等三角形的性质结合中点和垂线定义,进行等量替换即可得出线段与的位置及数量关系;(3)由题意根据全等三角形的性质得出S△BDE+S△CDF=S△ADF+S△CDF=S△ADC,进而分析即可得知与的面积之和.【详解】解:(1)∵AB=AC,D是BC边上的中点,∴AD是BC边上的高又∵∠BAC=90°,∴∠ABD=∠DAF=∠BAD=45°,∴BD=AD又由题意可知BE=AF,∴△BDE≌△ADF(SAS).(2)∵DE⊥DF,DE=DF,理由如下:∵△BDE≌△ADF,∴DE=DF,∠BDE=∠ADF∵AB=AC,D是BC边上的中点,∴AD⊥BC,∠BDE+∠ADE=90°,∴∠ADE+∠ADF=90°,DE⊥DF.(3)在运动过程中,△BDE与△CDF的面积之和始终是一个定值∵AB=AC,D是BC边上的中点,∠BAC=90°,∴AD=BD=BC=4又∵△BDE≌△ADFS△BDE+S△CDF=S△ADF+S△CDF=S△ADC又∵S△ADC=S△ABC=.BC.AD=1∵点E,F在运动过程中,△ADC的面积不变,∴△BDE与△CDF的面积之和始终是一个定值,这个定值为1.【点睛】本题考查全等三角形的综合问题,熟练掌握全等三角形的性质与判定是解题的关键.24、(1)29;9;(2)-4.【分析】(1)根据a2+b2=(a+b)2-2ab和(a-b)2=(a+b)2-4ab这两个公式即可得出答案;(2)根据积的乘方法则得出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度专利实施许可合同标的为新型材料
- 2024年度婚宴餐饮服务质量保证合同
- 2024年度个人隐私保护合同
- 2024年度槽探工程税务咨询服务合同
- 2024年度山地生态修复合同:受损生态系统的恢复与保护
- 2024年度企业咨询服务与策划合同
- 2024年度版权授权与内容分发合同
- 2024年度模板班组施工环保与节能合同
- 2024年度教育培训服务合同-为青少年提供编程与人工智能课程
- 2024年度特许经营合同授权区域为市区
- GB/T 44741-2024农产品产地土壤有效态砷的测定方法
- 糖尿病足部护理指导
- 2024-2030年全球及中国乳清蛋白水解物行业供需现状及前景动态预测报告
- 2024-2030年中国铝合金板行业供需现状分析及投资战略研究报告版
- 电影院消防安全预案
- 预防电信诈骗打击网络犯罪49
- 少年的风采 课件 2024-2025学年湘美版(2024)初中美术七年级上册
- 安徽省合肥市庐阳区2023-2024学年四年级上学期期中数学试卷(含答案)
- 班主任培训课件
- 石油化工代加工合同模板
- 污水处理厂土建工程的主要施工方案
评论
0/150
提交评论