版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届通化市重点中学数学八上期末调研模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,正方形ABCD的面积是(
)A.5 B.25 C.7
D.102.如图所示,已知∠1=∠2,下列添加的条件不能使△ADC≌△CBA的是A. B. C. D.3.人数相同的八年级一、二两班同学在同一次数学单元测试,班级平均分和方差如下:,,则成绩较为稳定的班级是()A.一班 B.二班 C.两班成绩一样稳定 D.无法确定4.下列各组数据中,不是勾股数的是A.3,4,5 B.7,24,25 C.8,15,17 D.5,7,95.下列计算正确的是()A.a2+a3=a5 B.a2•a3=a6 C.(a2)3=a6 D.(ab)2=ab26.当k取不同的值时,y关于x的函数y=kx+2(k≠0)的图象为总是经过点(0,2)的直线,我们把所有这样的直线合起来,称为经过点(0,2)的“直线束”.那么,下面经过点(﹣1,2)的直线束的函数式是()A.y=kx﹣2(k≠0) B.y=kx+k+2(k≠0)C.y=kx﹣k+2(k≠0) D.y=kx+k﹣2(k≠0)7.如图,在菱形ABCD中,对角线AC、BD相较于点O,BD=8,BC=5,AE⊥BC于点E,则AE的长为()A.5 B. C. D.8.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙 B.甲和丁 C.乙和丙 D.乙和丁9.一次函数上有两点(,),(,),则下列结论成立的是()A. B. C. D.不能确定10.如图,点B、F、C、E在一条直线上,,,要使≌,需要添加下列选项中的一个条件是
A. B. C. D.11.如图,是等边三角形,,则的度数为()A.50° B.55° C.60° D.65°12.若关于x的分式方程=a无解,则a为()A.1 B.-1 C.±1 D.0二、填空题(每题4分,共24分)13.因式分解:__________.14.某单位定期对员工按照专业能力、工作业绩、考勤情况三方面进行考核(每项满分100分),三者权重之比为,小明经过考核后三项分数分别为90分,86分,83分,则小明的最后得分为_________分.15.如图所示,在△ABC中,∠B=∠C=50°,BD=CF,BE=CD,则∠EDF的度数是_____.16.如图,OC平分∠AOB,D为OC上一点,DE⊥OB于E,若DE=7,则D到OA的距离为____.17.因式分解:__.18.分解因式:ax2-9a=.三、解答题(共78分)19.(8分)如图,已知∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠1.20.(8分)若,求(1);(2)的值.21.(8分)如图,在的正方形网格中,每个小正方形的边长为,小正方形的顶点叫做格点,连续任意两个格点的线段叫做格点线段.(1)如图1,格点线段、,请添加一条格点线段,使它们构成轴对称图形.(2)如图2,格点线段和格点,在网格中找出一个符合的点,使格点、、、四点构成中心对称图形(画出一个即可).22.(10分)如图,两条射线BA∥CD,PB和PC分别平分∠ABC和∠DCB,AD过点P,分别交AB,CD与点A,D.(1)求∠BPC的度数;(2)若S△ABP为a,S△CDP为b,S△BPC为c,求证:a+b=c.23.(10分)如图,在等腰三角形中,,,是边的中点,点在线段上从向运动,同时点在线段上从点向运动,速度都是1个单位/秒,时间是(),连接、、.(1)请判断形状,并证明你的结论.(2)以、、、四点组成的四边形面积是否发生变化?若不变,求出这个值:若变化,用含的式子表示.24.(10分)分解因式:①4m2﹣16n2②(x+2)(x+4)+125.(12分)如图,已知∠AOB=90°,OM是∠AOB的平分线,三角尺的直角顶点P在射线OM上滑动,两直角边分别与OA,OB交于点C,D,求证:PC=PD.26.如图1,已知,,且,.(1)求证:;(2)如图2,若,,折叠纸片,使点与点重合,折痕为,且.①求证:;②点是线段上一点,连接,一动点从点出发,沿线段以每秒1个单位的速度运动到点,再沿线段以每秒个单位的速度运动到后停止,点在整个运动过程中用时最少多少秒?
参考答案一、选择题(每题4分,共48分)1、B【解析】在直角△ADE中利用勾股定理求出AD2,即为正方形ABCD的面积.【详解】解:∵在△ADE中,∠E=90°,AE=3,DE=4,∴AD2=AE2+DE2=32+42=1,∴正方形ABCD的面积=AD2=1.故选B.【点睛】本题考查勾股定理的应用,掌握公式正确计算是解题关键.2、B【分析】根据全等三角形的判定的方法进行解答即可.【详解】A、∵AB∥DC,∴∠BAC=∠DCA,由,得出△ADC≌△CBA,不符合题意;B、由AB=CD,AC=CA,∠2=∠1无法得出△ADC≌△CBA,符合题意;C、由得出△ADC≌△CBA,不符合题意;D、由得出△ADC≌△CBA,不符合题意;故选C.【点睛】此题主要考查了全等三角形的判定,关键是由已知得到两个已知条件,再根据全等三角形的判定找出能使△ADC≌△CBA的另一个条件.3、B【分析】根据方差的意义判断.方差越小,波动越小,越稳定.【详解】解:∵,
∴成绩较为稳定的班级是乙班.
故选:B.【点睛】本题考查方差的意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4、D【解析】根据勾股数的定义(满足的三个正整数,称为勾股数)判定则可.【详解】A、,能构成直角三角形,是正整数,故是勾股数;
B、,能构成直角三角形,是正整数,故是勾股数;
C、,能构成直角三角形,故是勾股数;
D、,不能构成直角三角形,是正整数,故不是勾股数;
故选D.【点睛】本题考查的知识点是勾股数的定义,解题关键是注意勾股数不光要满足,还必须要是正整数.5、C【解析】试题解析:A.a2与a3不是同类项,故A错误;B.原式=a5,故B错误;D.原式=a2b2,故D错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.6、B【解析】把已知点(﹣1,2)代入选项所给解析式进行判断即可.【详解】在y=kx﹣2中,当x=﹣1时,y=﹣k﹣2≠2,故A选项不合题意,在y=kx+k+2中,当x=﹣1时,y=﹣k+k+2=2,故B选项符合题意,在y=kx﹣k+2中,当x=﹣1时,y=﹣k﹣k﹣2=﹣2k﹣2≠2,故C选项不合题意,在y=kx+k﹣2中,当x=﹣1时,y=﹣k+k﹣2=﹣2≠2,故D选项不合题意,故选B.【点睛】本题主要考查一次函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数解析式是解题的关键.7、C【解析】在中,根据求出OC,再利用面积法可得,由此求出AE即可.【详解】四边形ABCD是菱形,,,,在中,,,故,解得:.故选C.【点睛】此题主要考查了菱形的性质以及勾股定理,正确利用三角形面积求出AE的长是解题关键.8、D【解析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵=====,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.9、A【分析】首先判断出一次函数的增减性,然后根据A,B点的横坐标可得答案.【详解】解:∵一次函数中,∴y随x的增大而减小,∵2<3,∴,故选:A.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的增减性与k的关系是解题的关键.10、A【分析】根据“SAS”可添加BF=EC使△ABC≌△DEF.【详解】解:∵AB∥ED,AB=DE,∴∠B=∠E,∴当BF=EC时,可得BC=EF,可利用“SAS”判断△ABC≌△DEF.故选A.【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.11、A【分析】利用等边三角形三边相等,结合已知BC=BD,易证、都是等腰三角形,利用等边对等角及三角形内角和定理即可求得的度数.【详解】是等边三角形,,又,,,,,故选A.【点睛】本题考查了等边三角形、等腰三角形的性质、等边对等角以及三角形内角和定理,熟练掌握性质和定理是正确解答本题的关键.12、C【分析】分式方程无解包含整式方程无解,以及分式方程有增根.【详解】在方程两边同乘(x+1)得:x−a=a(x+1),整理得:x(1−a)=2a,当1−a=0时,即a=1,整式方程无解,则分式方程无解;当1−a=0时,,当时,分式方程无解解得:a=−1,故选C.【点睛】此题考查分式方程的解,解题关键在于掌握运算法则二、填空题(每题4分,共24分)13、【分析】因为-6=-3×2,-3+2=-1,所以可以利用十字相乘法分解因式即可得解.【详解】利用十字相乘法进行因式分解:.【点睛】本题考查了分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法与十字相乘法与分组分解法分解.14、82.2【分析】将三个方面考核后所得的分数分别乘上它们的权重,再相加,即可得到最后得分.【详解】解:小明的最后得分=27+43+1.2=82.2(分),
故答案为:82.2.【点睛】此题主要考查了加权平均数,关键是掌握加权平均数的计算方法.若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则叫做这n个数的加权平均数.15、50°【分析】由题中条件可得△BDE≌△CFD,即∠BDE=∠CFD,∠EDF可由180°与∠BDE、∠CDF的差表示,进而求解即可.【详解】解:如图,在△BDE与△CFD中,,∴△BDE≌△CFD(SAS),∴∠BDE=∠CFD,∠EDF=180°﹣(∠BDE+∠CDF)=180°﹣(∠CFD+∠CDF)=180°﹣(180°﹣∠C)=50°,∴∠EDF=50°,故答案是:50°.【点睛】本题主要考查了全等三角形的判定及性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.16、1.【分析】从已知条件开始思考,结合角平分线上的点到角两边的距离相等可知D到OA的距离为1.【详解】解:∵OC平分∠AOB,D为OC上任一点,且DE⊥OB,DE=1,∴D到OA的距离等于DE的长,即为1.故答案为:1.【点睛】本题考查了角平分线的性质;熟练掌握角平分线的性质,是正确解题的前提.17、【分析】利用十字相乘法因式分解即可.【详解】解:故答案为:.【点睛】此题考查的是因式分解,掌握利用十字相乘法因式分解是解决此题的关键.18、【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【详解】解:ax2-9a=a(-9)=a(x+3)(x-3).故答案为:【点睛】本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键.三、解答题(共78分)19、见解析【解析】试题分析:由同旁内角互补,两直线平行得到AB∥CD,进而得到∠ABC=∠BCD,再由∠P=∠Q,得到PB∥CQ,从而有∠PBC=∠QCB,根据等式性质得到∠1=∠1.试题解析:证明:∵∠ABC+∠ECB=180°,∴AB∥CD,∴∠ABC=∠BCD.∵∠P=∠Q,∴PB∥CQ,∴∠PBC=∠QCB,∴∠ABC﹣∠PBC=∠BCD﹣∠QCB,即∠1=∠1.点睛:本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.20、(1)4;(2).【分析】(1)根据可得,再利用完全平方公式()对代数式进行适当变形后,代入即可求解;(2)根据完全平方公式两数和的公式和两数差的公式之间的关系()即可求解.【详解】解:(1)∵,∴,将代入,原式==4;(2)由(1)得,即,∴,即,即.【点睛】本题考查通过对完全平方公式变形求值,二次根式的化简.熟记完全平方公式和完全平方公式的常见变形是解决此题的关键.21、(1)画图见解析.(2)画图见解析.【分析】(1)轴对称图形沿某条直线折叠后,直线两旁的部分能完全重合得出答案即可;(2)利用中心对称图形的定义得出D点位置即可;【详解】(1)如图,(2)如图,【点睛】本题考查了轴对称、中心对称作图,以及平行四边形的判定与性质,掌握画图的方法和图形的特点是解题的关键.22、(1)90°;(2)证明过程见解析;【分析】(1)根据角平分线定义和同旁内角互补,可得∠PBC+∠PCB的值,于是可求∠BPC;(2)利用角平分线性质作垂直证明全等,通过割法获得面积关系.【详解】(1)∵BA∥CD,∴∠ABC+∠BCD=180°,∵PB和PC分别平分∠ABC和∠DCB,∴∠PBC=∠ABC,∠PCB=∠BCD,∴∠PBC+∠PCB=×(∠ABC+∠BCD)=90°,∴∠BPC=90°;(2)如图,作PQ⊥BC,过P点作A′D′⊥CD,∵∠A′BP=∠QBP,∠BA′P=∠BQP,BP=BP∴△A′BP≌△BQP(AAS)同理△PQC≌△PCD′(AAS)∴S△BCP=S△BPQ+S△PQC=S△ABP+S△PCD∴a+b=c.【点睛】本题考查的是角平分线的性质、三角形中位线定理,掌握角的平分线上的点到角的两边的距离相等是解题的关键.23、(1)为等腰直角三角形,见解析;(2)不变,9【分析】⑴连结AD,由SAS定理可证和全等,从而可证,DF=DE.所以为等腰直角三角形.⑵由割补法可知四边形AEDF的面积不变,利用三角形的面积公式求出答案.【详解】(1)为等腰直角三角形,理由如下:连接,∵,,为中点∴且平分∴∵点、速度都是1个单位秒,时间是秒,∴在和中,,∴∴,∵∴即:∴为等腰直角三角形.(2)四边形面积不变,理由:∵由(1)可知,,∴,∴∵∴【点睛】本题考查了三角形全等的判断SAS,及用割补法来证四边形的面积不变,四边形又三角形来组成。24、①4(m+2n)(m﹣2n);②(x+3)2【分析】①原式提取4后,利用平方差分解因式即可得出答案;②原式整理后,利用完全平方公式分解即可得出答案.【详解】①解:4m2﹣16n2=4(m2﹣4n2)=4(m+2n)(m﹣2n)②解:(x+2)(x+4)+1=x2+6x+8+1=x2+6x+9=(x+3)2【点睛】本题考查了提取公因式法与公式法的综合运用,因式分解时,如果多项式的各项有公因式,首先考虑提取公因式,然后根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式,熟练掌握因式分解的方法是解题的关键.25、证明见解析.【解析】试题分析:过点P作PE⊥OA于点E,PF⊥OB于点F.根据垂直的定义得到由OM是∠AOB的平分线,根据角平分线的性质得到利用四边形内角和定理可得到而则,然后根据“AAS”可判断△PCE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《商品法律法规》课件
- 浙江省2024年高考语文压轴卷含解析
- 2024年度农产品质量检测与认证服务合同
- 2024年度土地使用权转让补充合同
- 2024年度版权购买合同标的及版权内容描述
- 2024年度军事基地草坪更新施工合同
- 2024年度城市供水工程建设项目施工合同
- 2024年度技术咨询与服务合同(技术方案、技术指导、技术培训)
- 2024年度专利实施许可合同标的为新型材料
- 2024年度婚宴餐饮服务质量保证合同
- 2024年1月上海市春季高考数学试卷试题真题(含答案详解)
- GB/T 44741-2024农产品产地土壤有效态砷的测定方法
- 糖尿病足部护理指导
- 2024-2030年全球及中国乳清蛋白水解物行业供需现状及前景动态预测报告
- 2024-2030年中国铝合金板行业供需现状分析及投资战略研究报告版
- 电影院消防安全预案
- 预防电信诈骗打击网络犯罪49
- 少年的风采 课件 2024-2025学年湘美版(2024)初中美术七年级上册
- 安徽省合肥市庐阳区2023-2024学年四年级上学期期中数学试卷(含答案)
- 班主任培训课件
- 石油化工代加工合同模板
评论
0/150
提交评论