2025届江苏省常熟市第一中学八年级数学第一学期期末联考模拟试题含解析_第1页
2025届江苏省常熟市第一中学八年级数学第一学期期末联考模拟试题含解析_第2页
2025届江苏省常熟市第一中学八年级数学第一学期期末联考模拟试题含解析_第3页
2025届江苏省常熟市第一中学八年级数学第一学期期末联考模拟试题含解析_第4页
2025届江苏省常熟市第一中学八年级数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省常熟市第一中学八年级数学第一学期期末联考模拟试题拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP=2,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于2,则α=()A.30° B.45° C.60° D.15°2.已知,则下列不等式成立的是()A. B. C. D.3.如图所示,在下列条件中,不能判断≌的条件是()A., B.,C., D.,4.函数的图象如图所示,则函数的大致图象是()A. B. C. D.5.甲、乙、丙、丁四名设计运动员参加射击预选赛,他们射击成绩的平均数及方差如下表示:若要选出一个成绩较好状态稳定的运动员去参赛,那么应选运动员()甲乙丙丁899811A.甲 B.乙 C.丙 D.丁6.下列运算中,正确的是()A.(a2)3=a5 B.3a2÷2a=a C.a2•a4=a6 D.(2a)2=2a27.一组数据2,2,4,3,6,5,2的众数和中位数分别是A.3,2 B.2,3 C.2,2 D.2,48.下列运算结果正确的是()A. B.C. D.9.如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,则下列结论错误的是()A.∠COP=∠DOP B.PC=PD C.OC=OD D.∠COP=∠OPD10.已知不等式x﹣1≥0,此不等式的解集在数轴上表示为()A. B. C. D.11.如图,直线与的图像交于点(3,-1),则不等式组的解集是()A. B. C. D.以上都不对12.如图,四个图标分别是北京大学、人民大学、浙江大学和宁波大学的校徽的重要组成部分,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)13.如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是__________.14.如图,△ABC中,∠A=90°,AB=AC,顶点B为(﹣4,0),顶点C为(1,0),将△ABC关于y轴轴对称变换得到△A1B1C1,再将△A1B1C1关于直线x=2(即过(2,0)垂直于x轴的直线)轴对称变换得到△A2B2C2,再将△A2B2C2关于直线x=4轴对称变换得到△A3B3C3,再将△A3B3C3关于直线x=6轴对称变换得到△A4B4C4…,按此规律继续变换下去,则点A10的坐标为_____.15.计算的值___________.16.在中,将,按如图所示方式折叠,点,均落于边上一点处,线段,为折痕,若,则______.17.如图,将一个边长分别为1、3的长方形放在数轴上,以原点O为圆心,长方形的对角线OB长为半径作弧,交数轴正半轴于点A,则点A表示的实数是_______.18.已知一粒米的质量是1.111121千克,这个数字用科学记数法表示为__________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,直线分别交轴、轴于点点,,且满足,点在直线的左侧,且.(1)求的值;(2)若点在轴上,求点的坐标;(3)若为直角三角形,求点的坐标.20.(8分)如图,已知△ABC中,∠ACB=,CD是AB边上的高,AE是∠BAC的平分线,且与CD交于点F,(1)求证:CE=CF;(2)过点F作FG‖AB,交边BC于点G,求证:CG=EB.21.(8分)如图,在△ABC中,AB=AC,∠BAC=90°.(1)如图1,若直线AD与BC相交于M,过点B作AM的垂线,垂足为D,连接CD并延长BD至E,使得DE=DC,过点E作EF⊥CD于F,证明:AD=EF+BD.(2)如图2,若直线AD与CB的延长线相交于M,过点B作AM的垂线,垂足为D,连接CD并延长BD至E,使得DE=DC,过点E作EF⊥CD交CD的延长线于F,探究:AD、EF、BD之间的数量关系,并证明.22.(10分)基本图形:在RT△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.探索:(1)连接EC,如图①,试探索线段BC,CD,CE之间满足的等量关系,并证明结论;(2)连接DE,如图②,试探索线段DE,BD,CD之间满足的等量关系,并证明结论;联想:(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD=7,CD=2,则AD的长为.23.(10分)如图,AB⊥BC,DC⊥BC,若∠DBC=45°,∠A=70°,求∠D,∠AED,∠BFE的度数.24.(10分)阅读理解:关于x的方程:x+=c+的解为x1=c,x2=;x﹣=c﹣(可变形为x+=c+)的解为x1=c,x2=;x+=c+的解为x1=c,x2=Zx+=c+的解为x1=c,x2=Z.(1)归纳结论:根据上述方程与解的特征,得到关于x的方程x+=c+(m≠0)的解为.(2)应用结论:解关于y的方程y﹣a=﹣25.(12分)东方市在铁路礼堂举办大型扶贫消费市场,张老师购买一斤芒果和三斤哈密瓜共花费26元;李老师购买三斤芒果和两斤哈密瓜共花费29元.求一斤芒果和一斤哈密瓜的售价各是多少元?26.某数学兴趣小组开展了一次活动,过程如下:设.现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线、上.活动一、如图甲所示,从点开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直(为第1根小棒)数学思考:(1)小棒能无限摆下去吗?答:(填“能”或“不能”)(2)设,求的度数;活动二:如图乙所示,从点开始,用等长的小棒依次向右摆放,其中为第一根小棒,且.数学思考:(3)若已经摆放了3根小棒,则,,;(用含的式子表示)(4)若只能摆放5根小棒,则的取值范围是.

参考答案一、选择题(每题4分,共48分)1、A【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点E、F在CD上时,△PEF的周长为PE+EF+FP=CD,此时周长最小,根据CD=2可求出α的度数.【详解】如图,作点P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F.此时,△PEF的周长最小.连接OC,OD,PE,PF.∵点P与点C关于OA对称,∴OA垂直平分PC,∴∠COA=∠AOP,PE=CE,OC=OP,同理,可得∠DOB=∠BOP,PF=DF,OD=OP.∴∠COA+∠DOB=∠AOP+∠BOP=∠AOB=α,OC=OD=OP=2,∴∠COD=2α.又∵△PEF的周长=PE+EF+FP=CE+EF+FD=CD=2,∴OC=OD=CD=2,∴△COD是等边三角形,∴2α=60°,∴α=30°.故选A.【点睛】本题找到点E和F的位置是解题的关键.要使△PEF的周长最小,通常是把三边的和转化为一条线段,运用三角形三边关系解决.2、C【分析】根据不等式的性质逐项分析.【详解】A在不等式的两边同时减去1,不等号的方向不变,故A错误;B在不等式的两边同时乘以3,不等号的方向不变,故B错误;C在不等式的两边同时乘以-1,不等号的方向改变,故C正确;D在不等式的两边同时乘以,不等号的方向不变,故D错误.【点睛】本题主要考查不等式的性质,(1)在不等式的两边同时加上或减去同一个数,不等号的方向不变;(2)在不等式的两边同时乘以或除以(不为零的数)同一个正数,不等号的方向不变;(3)在不等式的两边同时乘以或除以(不为零的数)同一个负数,不等号的方向改变.3、B【分析】已知条件是两个三角形有一公共边,只要再加另外两边对应相等或有两角对应相等即可,如果所加条件是一边和一角对应相等,则所加角必须是所加边和公共边的夹角对应相等才能判定两个三角形全等.【详解】A、符合AAS,能判断两个三角形全等,故该选项不符合题意;B、符合SSA,∠BAD和∠ABC不是两条边的夹角,不能判断两个三角形全等,故该选项符合题意;C、符合AAS,能判断两个三角形全等,故该选项不符合题意;D、符合SSS,能判断两个三角形全等,故该选项不符合题意;故选择:B.【点睛】本题考查了全等三角形的判定方法,三角形判定定理中,最容易出错的是“边角边”定理,这里强调的是夹角,不是任意角.4、B【分析】根据一次函数的图象的性质确定a和b的符号,进而解答即可.【详解】解:由函数y=ax+b-2的图象可得:a<0,b-2=0,

∴a<0,b=2>0,

所以函数y=-ax-b的大致图象经过第一、四、三象限,

故选:B.【点睛】本题考查了一次函数的性质,关键是根据一次函数的图象的性质确定a和b的符号.5、B【分析】根据平均数及方差的定义和性质进行选择即可.【详解】由上图可知,甲、乙、丙、丁中乙、丙的平均数最大,为9∵∴乙的方差比丙的方差小∴选择乙更为合适故答案为:B.【点睛】本题考查了平均数和方差的问题,掌握平均数及方差的定义和性质是解题的关键.6、C【分析】分别根据同底数幂的乘法、除法运算法则以及幂的乘方运算法则分别求出即可.【详解】解:A、(a2)3=a6,故此选项错误;B、3a2÷2a=a,故此选项错误;C、此选项正确;D、(2a)2=4a2,故此选项错误;故选C.7、B【解析】根据众数的意义,找出出现次数最多的数,根据中位数的意义,排序后找出处在中间位置的数即可.【详解】解:这组数据从小到大排列是:2,2,2,3,4,5,6,出现次数最多的数是2,故众数是2;处在中间位置的数,即处于第四位的数是中位数,是3,故选:.【点睛】考查众数、中位数的意义,即从出现次数最多的数、和排序后处于之中间位置的数.8、C【分析】分别根据完全平方公式、合并同类项的法则、单项式乘多项式以及同底数幂的除法法则逐一判断即可.【详解】A.,故本选项错误;B.,故本选项错误;C.,故本选项正确;D.,故本选项错误;故选C.【点睛】本题主要考察整式的加减、完全平方公式和同底数幂的除法,解题关键是熟练掌握计算法则.9、D【分析】先根据角平分线的性质得出PC=PD,∠POC=∠POD,再利用HL证明△OCP≌△ODP,根据全等三角形的性质得出OC=OD即可判断.【详解】∵OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,∴PC=PD,∠POC=∠POD,故A,B正确;在Rt△OCP与Rt△ODP中,,∴Rt△OCP≌Rt△ODP(HL),∴OC=OD,故C正确.不能得出∠COP=∠OPD,故D错误.故选:D.【点睛】此题主要考查角平分线的性质与证明,解题的关键是熟知角平分线的性质定理与全等三角形的判定方法.10、C【分析】根据不等式的性质求出不等式的解集,再在数轴上表示出不等式的解集即可.【详解】解:∵x﹣1≥0,∴x≥1.不等式的解集在数轴上表示的方法:>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.因此不等式x≥1即x﹣1≥0在数轴上表示正确的是C.故选C.11、C【分析】首先根据交点得出,判定,然后即可解不等式组.【详解】∵直线与的图像交于点(3,-1)∴∴,即由图象,得∴,解得,解得∴不等式组的解集为:故选:C.【点睛】此题主要考查根据函数图象求不等式组的解集,利用交点是解题关键.12、B【解析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】北京大学和宁波大学的校徽是轴对称图形,共2个,故选B.【点睛】此题主要考查了轴对称图形,关键是掌握轴对称图形的概念.二、填空题(每题4分,共24分)13、【分析】从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】如图,在AC上截取AE=AN,连接BE∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,∵AM=AM∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE.∵BM+MN有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又AB=4,∠BAC=45°,此时,△ABE为等腰直角三角形,∴BE=,即BE取最小值为,∴BM+MN的最小值是.【点睛】解此题是受角平分线启发,能够通过构造全等三角形,把BM+MN进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.14、(15.5,2.5)【分析】根据对称性质可得点的坐标变化规律,由此即可求解.【详解】解:△ABC中,∠A=90°,AB=AC,顶点B为(﹣4,0),顶点C为(1,0),∴BC=5∴A(﹣1.5,2.5)将△ABC关于y轴轴对称变换得到△A1B1C1,∴A1(1.5,2.5)再将△A1B1C1关于直线x=2轴对称变换得到△A2B2C2,∴A2(2.5,2.5)再将△A2B2C2关于直线x=4轴对称变换得到△A3B3C3,∴A3(5.5,2.5)再将△A3B3C3关于直线x=6轴对称变换得到△A4B4C4,∴A4(6.5,2.5)…按此规律继续变换下去,A5(8.5,2.5),A6(9.5,2.5),A7(11.5,2.5)则点A10的坐标为(15.5,2.5),故答案为:(15.5,2.5).【点睛】本题考查了规律型点的坐标,解决本题的关键是掌握对称性.注意在寻找规律的过程中需要多写出几个点A的坐标.15、【分析】先按积的乘方,再按同底数幂的乘法分别运算好,根据负整数指数幂的意义得出结果.【详解】解:故答案为:.【点睛】本题考查的是整数指数幂的运算,掌握整数指数幂的运算法则是解题关键.16、【分析】由折叠的性质,得到∠MQN=∠B,∠EQF=∠C,由三角形内角和定理,得到∠B+∠C=98°,根据平角的定义,即可得到答案.【详解】解:由折叠的性质,得到∠MQN=∠B,∠EQF=∠C,∵∠A+∠B+∠C=180°,∴∠B+∠C=180°98°,∴∠MQN+∠EQF=98°,∴;故答案为:.【点睛】本题考查了折叠的性质,三角形内角和定理,以及平角的定义,解题的关键是熟练掌握折叠的性质进行解题.17、【分析】根据勾股定理求出OB,根据实数与数轴的关系解答.【详解】在Rt△OAB中,OB==,∴点A表示的实数是,故答案为:.【点睛】本题考查的是勾股定理,实数与数轴,掌握如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2是解题的关键.18、2.1×【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×11-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定.【详解】解:1.111121=2.1×11-2.

故答案为:2.1×11-2.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×11-n,其中1≤|a|<11,n由原数左边起第一个不为零的数字前面的1的个数所决定.三、解答题(共78分)19、(1)a=2,b=1;(2)P(1,0);(3)P(﹣1,2)或(﹣2,﹣2).【分析】(1)将利用完全平方公式变形得到(a-2)2+|2a-b|=0,即可求出a、b的值;(2)由b的值得到OB=1,根据得到OP=OB=1,即可得到点P的坐标;(3)由可分两种情况求使为直角三角形,当∠ABP=90°时,当∠BAP=90°时,利用等腰三角形的性质证明三角形全等,由此得到点P的坐标.【详解】(1)∵a2-1a+1+|2a-b|=0,∴(a-2)2+|2a-b|=0,∴a=2,b=1.(2)由(1)知,b=1,∴B(0,1).∴OB=1.∵点P在直线AB的左侧,且在x轴上,∠APB=15°∴OP=OB=1,∴P(1,0).(3)由(1)知a=﹣2,b=1,∴A(2,0),B(0,1)∴OA=2,OB=1,∵△ABP是直角三角形,且∠APB=15°,∴只有∠ABP=90°或∠BAP=90°,如图,①当∠ABP=90°时,∵∠BAP=15°,∴∠APB=∠BAP=15°.∴AB=PB.过点P作PC⊥OB于C,∴∠BPC+∠CBP=90°,∵∠CBP+∠ABO=90°,∴∠ABO=∠BPC.在△AOB和△BCP中,,∴△AOB≌△BCP(AAS).∴PC=OB=1,BC=OA=2.∴OC=OB﹣BC=2.∴P(-1,2)②当∠BAP=90°时,过点P'作P'D⊥OA于D,同①的方法得,△ADP'≌△BOA.∴DP'=OA=2,AD=OB=1.∴OD=AD﹣OA=2.∴P'(﹣2,-2).即:满足条件的点P(﹣1,2)或(﹣2,﹣2).【点睛】此题考查等腰直角三角形的性质,完全平方公式,三角形全等的判定及性质,分类讨论直角三角形形成的点的坐标.20、(1)见解析;(2)见解析【分析】(1)要得到CE=CF证明∠CFE=∠CEF即可,据已知条件∠CAE+∠CEA=90°,∠FAD+∠AFD=90°,因为AE平分∠CAB,所以∠AFD=∠AEC;因为∠AFD=∠CFE,即可得∠CFE=∠CEF,即得结论CF=CE.(2)过点E作,垂足为点H,如能证得,即可得解.【详解】解:(1)∵AE平分,∴∵,且,∴∠ACD=∠B∵∠CFE=∠CAE+∠ACD,∠CEF=∠BAE+∠B∴∠CFE=∠CEF∴(2)过点E作,垂足为点H,∵AE平分,且∴.又∵,∴∵,且FG∥AB,∴∠CGF=∠B,且,∠CFG=90°在中,∵,∴∴.【点睛】本题主要考查全等三角形的判定,涉及到直角三角形,等腰三角形、平行线等的性质,是一道综合性题目,比较复杂.解题的关键是熟练掌握所学的知识进行证明.21、(1)见解析;(2)AD+BD=EF,理由见解析.【分析】(1)将△ABD绕点A逆时针方向旋转90°至△ACG,得到BD=CG,延长GC交DE于点H,证明四边形ADHG为正方形,则AD=GH,证明△DEF≌△DCH,得到EF=CH,则得出结论;(2)作CN⊥AM,证明△DEF≌△CDN,得到EF=DN,证明△ADB≌△CNA.得到BD=AN.则AD+AN=DN=EF.【详解】证明:(1)∵AB=AC,∠BAC=90°,∴△ABC为等腰直角三角形,如图1,将△ABD绕点A逆时针方向旋转90°至△ACG,∴BD=CG,延长GC交DE于点H,∵AD⊥BE,∠DAG=∠AGC=90°,AD=AG,∴四边形ADHG为正方形,∴∠DHC=90°,∴AD=GH,∵DE=DC,EF⊥CD,∠EDF=∠CDH,∴△DEF≌△DCH(AAS),∴EF=CH,∴AD=GH=GC+CH=EF+BD;(2)AD+BD=EF,理由如下:作CN⊥AM,∵AD⊥BE,∴∠EDF+∠ADC=90°,∵∠DCN+∠ADC=90°,∴∠EDF=∠DCN,∵∠F=∠DNC=90°,DE=DC,∴△DEF≌△CDN(AAS),∴EF=DN,∵∠BAC=90°,∴∠DAB+∠NAC=90°,又∵∠DAB+∠DBA=90°,∴∠NAC=∠DBA,∵AB=AC,∴△ADB≌△CNA(AAS).∴BD=AN.∴AD+AN=DN=EF,∴AD+BD=EF.【点睛】本题考查了全等三角形的判定与性质,正方形的判定与性质,旋转的性质,正确作出辅助线是解题的关键.22、(1)结论:.证明见解析;(2)结论:.证明见解析;(3)【分析】(1)说明△BAD≌OCAE(SAS)即可解答;(2)先说明△BAD≌△CAE,可得BD=CE、∠ACE=∠B,进一步可得∠DCE=90°,最后利用勾股定理即可解答;(3)作AE⊥AD.使AE=AD,连接CE,DE.由△BAD≌△CAE(SAS),推出BD=CE=7,由∠ADC=45°,∠EDA=45°,可得∠EDC=90°,最后利用勾股定理解答即可【详解】解:(1)结论:,理由如下:如图①中,∵,∴,即,在和中,,∴,∴,∴,即:;(2)结论:.理由如下:连接CE,由(1)得,,∴,,∴,∴.∴(3)作AE⊥4D,使4E=AD,连接CE,DE.∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,AB=AC,∠BAD=∠CAE,AD=AE∴△BAD≌△CAE(SAS),∴BD=CE=7,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°。∴DE==√8.∵∠DAE=90°∴,即∴AD=.故答案为.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、勾股定理等知识,正确添加常用辅助线,构造全等三角形解决问题是解答本题的关键.23、∠D=45°;∠AED=70°;∠BFE=115°.【解析】根据直角三角形两锐角互余列式求解即可得到∠D,根据在同一平面内垂直于同一直线的两直线互相平行可得AB∥CD,再根据两直线平行,内错角相等可得∠AED=∠A,然后根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BFE=∠D+∠AED.【详解】∵DC⊥BC,∠DBC=45°,∴∠D=90°﹣∠DBC=90°﹣45°=45°;∵AB⊥BC,DC⊥BC,∴AB∥DC,∴∠AED=∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论