版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江西省南昌市进贤县数学八上期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在中,其中,的平分线交于点,是的垂直平分线,点是垂足.已知,则图中长度为的线段有()A.1条 B.2条 C.3条 D.4条2.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是( )A.带①去 B.带②去 C.带③去 D.①②③都带去3.如图,在平面直角坐标系中,点P坐标为(-4,3),以点B(-1,0)为圆心,以BP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.-6和-5之间 B.-5和-4之间 C.-4和-3之间 D.-3和-2之间4.如图,△ABC中,AB=AC,∠C=72°,AB的垂直平分线DE交AC于D,交AB于E,则∠BDC的度数为()A.82° B.72° C.60° D.36°5.如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.AB=AC B.∠BAC=90° C.BD=AC D.∠B=45°6.直线y=ax+b经过第一、二、四象限,则直线y=bx﹣a的图象只能是图中的()A. B. C. D.7.计算12a2b4•(﹣)÷(﹣)的结果等于()A.﹣9a B.9a C.﹣36a D.36a8.在平面直角坐标系中,点M在第四象限,到x轴,y轴的距离分别为6,4,则点M的坐标为()A.(4,﹣6) B.(﹣4,6) C.(﹣6,4) D.(﹣6,﹣4)9.函数与的部分自变量和对应函数值如下:x-4-3-2-1y-1-2-3-4x-4-3-2-1y-9-6-30当时,自变量x的取值范围是()A. B. C. D.10.如图,若在象棋盘上建立直角坐标系,使“帅”位于点.“馬”位于点,则“兵”位于点()A. B.C. D.二、填空题(每小题3分,共24分)11.多项式加上一个单项式后能称为一个完全平方式,请你写出一个符合条件的单项式__________.12.如图,在Rt△ABC中,∠C=90°.点O是AB的中点,边AC=6,将边长足够大的三角板的直角顶点放在点O处,将三角板绕点0旋转,始终保持三角板的直角边与AC相交,交点为点E,另条直角边与BC相交,交点为D,则等腰直角三角板的直角边被三角板覆盖部分的两条线段CD与CE的长度之和为_____.13.如图,△ABC是等腰直角三角形,AB=BC,已知点A的坐标为(﹣2,0),点B的坐标为(0,1),则点C的坐标为__.14.如图,AH⊥BC交BC于H,那么以AH为高的三角形有_____个.15.如图,在▱ABCD中,对角线AC与BD相交于点O,AC⊥CD,OE∥BC交CD于E,若OC=4,CE=3,则BC的长是____.16.如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为____.17.如图,等边△中,于,,点、分别为、上的两个定点且,在上有一动点使最短,则的最小值为_____.18.是关于的一元二次方程的解,则.__________.三、解答题(共66分)19.(10分)如图,在边长为1的小正方形组成的10×10网络中(我们把组成网格的小正方形的顶点称为格点),△ABC的三个顶点分别在网格的格点上(1)请你在所给的网格中建立平面直角坐标系,使△ABC的顶点A的坐标为(-3,5);(2)在(1)的坐标系中,直接写出△ABC其它两个顶点的坐标;(3)在(1)的坐标系中,画出△ABC关于y轴对称的图形△A1B1C1.20.(6分)如图,在和中,,,与相交于点.(1)求证:;(2)是何种三角形?证明你的结论.21.(6分)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成.已知甲、乙两车单独运完此垃圾,乙车所运趟数是甲车的2倍.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(2)若租用甲、乙两车各运12趟需支付运费4800元,且乙车每趟运费比甲车少200元.求单独租用一台车,租用哪台车合算?22.(8分)(1)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点,且∠EAF=60°,请探究图中线段BE,EF,FD之间的数量关系是什么?小明探究此问题的方法是:延长FD到点G,使DG=BE,连结AG.先证明△ABE≌△ADG,得AE=AG;再由条件可得∠EAF=∠GAF,证明△AEF≌△AGF,进而可得线段BE,EF,FD之间的数量关系是.(2)拓展应用:如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD.问(1)中的线段BE,EF,FD之间的数量关系是否还成立?若成立,请给出证明;若不成立,请说明理由.23.(8分)如图,等边△ABC的边长为12cm,点P、Q分别是边BC、CA上的动点,点P、Q分别从顶点B、C同时出发,且它们的速度都为3cm/s.(1)如图1,连接PQ,求经过多少秒后,△PCQ是直角三角形;(2)如图2,连接AP、BQ交于点M,在点P、Q运动的过程中,∠AMQ的大小是否变化?若变化,请说明理由;若不变,请求出它的度数.24.(8分)如图,△ABC中,∠B=90°,AB=3,BC=4,AC=5;
实践与操作:过点A作一条直线,使这条直线将△ABC分成面积相等的两部分,直线与BC交于点D.(尺规作图,不写作法,保留作图痕迹,标清字母)
推理与计算:求点D到AC的距离.25.(10分)如图,把△ABC平移,使点A平移到点O.(1)作出△ABC平移后的△OB′C′;(2)求出只经过一次平移的距离.26.(10分)如图在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE﹣BE的值.
参考答案一、选择题(每小题3分,共30分)1、C【分析】由角平分线的性质可得,垂直平分线的性质可得,然后通过勾股定理计算一下其他的线段的长度,从而可得出答案.【详解】∵BD平分,,∵是的垂直平分线在和中,∴长度为的线段有AB,BE,EC故选:C.【点睛】本题主要考查角平分线的性质及垂直平分线的性质,掌握角平分线的性质和垂直平分线的性质是解题的关键.2、C【分析】本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【详解】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.【点睛】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.3、A【解析】先根据勾股定理求出BP的长,由于BA=BP,得出点A的横坐标,再估算即可得出结论.【详解】∵点P坐标为(-4,3),点B(-1,0),
∴OB=1,
∴BA=BP==3,
∴OA=3+1,
∴点A的横坐标为-3-1,
∵-6<-3-1<-5,
∴点A的横坐标介于-6和-5之间.
故选A.【点睛】本题考查了勾股定理、估算无理数的大小、坐标与图形性质,根据题意利用勾股定理求出BP的长是解题的关键.4、B【分析】先根据AB=AC,∠C的度数,求出∠ABC的度数,再由垂直平分线的性质求出∠ABD的度数,再由三角形内角与外角的性质解答即可.【详解】解:∵AB=AC,∠C=72°,
∴∠ABC=∠C=72°,∴∠A=36°
∵DE垂直平分AB,
∴∠A=∠ABD=36°,
∴∠BDC=∠A+∠ABD=36°+36°=72°.
故选:B.【点睛】点评:本题考查的是线段垂直平分线的性质及三角形内角和定理、等腰三角形的性质,解答此题的关键是熟知线段垂直平分线的性质,即线段的垂直平分线上的点到线段的两个端点的距离相等.5、A【解析】试题分析:根据AB=AC,AD=AD,∠ADB=∠ADC=90°可得Rt△ABD和Rt△ACD全等.考点:三角形全等的判定6、B【解析】试题分析:已知直线y=ax+b经过第一、二、四象限,所以a<0,b>0,即可得直线y=bx﹣a的图象经过第一、二、三象限,故答案选B.考点:一次函数图象与系数的关系.7、D【分析】通过约分化简进行计算即可.【详解】原式=12a2b4•(﹣)·(﹣)=36a.故选D.【点睛】本题考点:分式的化简.8、A【分析】已知点M在第四象限内,那么横坐标大于0,纵坐标小于0,进而根据到坐标轴的距离判断坐标.【详解】解:因为点M在第四象限,所以其横、纵坐标分别为正数、负数,又因为点M到x轴的距离为6,到y轴的距离为4,所以点M的坐标为(4,﹣6).故选A.【点睛】本题主要考查了点在第四象限时点的坐标的符号,点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.9、B【分析】根据表格可确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表格可得y1=k1x+b1中y随x的增大而减小,y1=k1x+b1中y随x的增大而增大.且两个函数的交点坐标是(-1,-3).
则当x<-1时,y1>y1.
故选:B.【点睛】本题考查了函数的性质,正确确定增减性以及两函数交点坐标是关键.10、C【解析】试题解析:如图,“兵”位于点(−3,1).故选C.二、填空题(每小题3分,共24分)11、12n【分析】首末两项是3n和2这两个数的平方,那么中间一项为加上或减去2x和1积的2倍,据此解答即可.【详解】由题意得,可以添加12n,此时,符合题意.故答案为:12n(答案不唯一).【点睛】本题考查了完全平方公式,熟练掌握完全平方公式(a±b)2=a2±2ab+b2是解答本题的关键.12、1.【分析】连接OC,证明△OCD≌△OBE,根据全等三角形的性质得到CD=BE即可解决问题;【详解】连接OC.∵AC=BC,AO=BO,∠ACB=90°,∴∠ACO=∠BCO=∠ACB=45°,OC⊥AB,∠A=∠B=45°,∴OC=OB,∵∠BOD+∠EOD+∠AOE=180°,∠EOD=90°,∴∠BOD+∠AOE=90°,又∵∠COE+∠AOE=90°,∴∠BOD=∠COE,在△OCE和△OBD中,,∴△OCE≌△OBD(ASA),∴CE=BD,∴CE+CD=BD+CD=BC═AC=1.故答案为:1.点睛】本题考查旋转变换、等腰直角三角形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.13、(-3,2)【解析】试题分析:作CD⊥x轴于D,根据条件可证得ΔACD≌ΔBAO,故AD=OB=1,CD=OA=2,所以OD=3,所以C(-3,2).考点:1.辅助线的添加;2.三角形全等.14、1【解析】∵AH⊥BC交BC于H,而图中有一边在直线CB上,且以A为顶点的三角形有1个,∴以AH为高的三角形有1个,故答案为:1.15、1.【分析】首先利用三角形的中位线定理求得CD的长,然后利用勾股定理求得AD的长,即可求出BC的长.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC.∵OE∥BC,∴OE∥AD,∴OE是△ACD的中位线.∵CE=3cm,∴DC=2OE=2×3=2.∵CO=4,∴AC=3.∵AC⊥CD,∴AD1,∴BC=AD=1.故答案为:1.【点睛】考查了平行四边形的性质,三角形中位线定理,勾股定理,正确的理解平行四边形的性质是解答本题的关键,难度不大.16、1cm【分析】利用平面展开图有两种情况,画出图形利用勾股定理求出MN的长即可.【详解】如图1,∵AB=18cm,BC=GF=12cm,BF=10cm,∴BM=18﹣6=12,BN=10+6=16,∴MN==1;如图2,∵AB=18cm,BC=GF=12cm,BF=10cm,∴PM=18﹣6+6=18,NP=10,∴MN==2.∵1<2∴蚂蚁沿长方体表面爬到米粒处的最短距离为1.故答案为1cm【点睛】此题主要考查了平面展开图的最短路径问题和勾股定理的应用,利用展开图有两种情况分析得出是解题关键.17、1【分析】作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小,最小值PE+PQ=PE+EQ′=PQ′;【详解】解:如图,∵△ABC是等边三角形,∴BA=BC,∵BD⊥AC,∴AD=DC=3.1cm,作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值PE+PQ=PE+EQ′=PQ′,∵AQ=2cm,AD=DC=3.1cm,∴QD=DQ′=1.1cm,∴CQ′=BP=2cm,∴AP=AQ′=1cm,∵∠A=60°,∴△APQ′是等边三角形,∴PQ′=PA=1cm,∴PE+QE的最小值为:1cm.故答案为1.【点睛】本题考查等边三角形的性质和判定,轴对称的性质,以及最短距离问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.18、-2【分析】先把x=1代入方程得a+2b=-1,然后利用整体代入的方法计算的值.【详解】解:把代入方程得:,所以,所以故答案为【点睛】本题考查了一元二次方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.三、解答题(共66分)19、(1)见解析;(2)B(-4,2)、C(-1,3);(3)见解析.【分析】(1)根据点A的坐标为(-3,5)画出坐标系即可;(2)根据点B、C两点在坐标系中的位置写出B、C两点的坐标;(3)根据轴对称图形的性质,作出△ABC关于y轴对称的图形△A1B1C1.【详解】(1)如下图所示;(2)根据点B、C两点在坐标系中的位置,可得B(-4,2)、C(-1,3);(3)如下图所示.【点睛】本题考查了坐标轴的几何作图问题,掌握坐标轴的性质、轴对称图形的性质是解题的关键.20、(1)见解析;(2)是等腰三角形,证明见解析【分析】(1)根据已知条件,用HL直接证明Rt△ABC≌Rt△DCB即可;(2)利用全等三角形的对应角相等得到∠ACB=∠DBC,即可证明△OBC是等腰三角形.【详解】证明:(1)在和中,,为公共边,∴(2)是等腰三角形∵∴∴∴是等腰三角形【点睛】此题主要考查学生对直角三角形全等的判定和性质以及等腰三角形的判定的理解和掌握,熟练掌握相关判定定理和性质定理是解题关键.21、(1)甲18趟,乙36趟;(2)乙【分析】(1)设甲需要x趟,则乙需要2x趟,设总工作量为单位1,利用等量关系式:甲完成的工作+乙完成的工作=1列方程解答;(2)设甲每趟y元,则乙每趟(y-200)元,利用等量关系式:甲的费用+乙的费用=总费用,列方程可求得甲、乙一趟的费用,然后分别算出甲、乙的总费用,比较即可.【详解】(1)设甲单独运需要x趟,则乙需要2x趟则方程为:12解得:x=18故甲需要18趟,乙需要36趟(2)设甲每趟y元,则乙每趟(y-200)元则方程为:12(y+y-200)=4800解得:y=300故甲一趟300元,乙一趟100元故甲的总费用为:300×18=5400元乙的总费用为:100×36=3600元∵5400<3600故乙划算,租乙车【点睛】本题考查一元一次方程的工程问题和方案为题,解题关键是根据题干找出等量关系式,列写合适的方程.22、(1)EF=BE+DF;(2)结论EF=BE+DF仍然成立;证明见解析.【分析】(1)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;(2)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题.【详解】(1)EF=BE+DF,理由如下:在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为:EF=BE+DF.(2)结论EF=BE+DF仍然成立;理由:延长FD到点G.使DG=BE.连结AG,如图2,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF.【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,直角三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.23、(1)经过43秒或83秒,△PCQ是直角三角形(2)∠【解析】(1)分两种情形分别求解即可解决问题;(2)由△AB≌△BCQ(SAS),推出∠BAP=∠CBQ,可得∠AMQ=∠PAB+∠ABQ=∠CBQ+∠ABQ=∠ABC=60°即可.【详解】(1)设经过t秒后,△PCQ是直角三角形.由题意:PC=(12﹣3t)cm,CQ=3t,∵△ABC是等边三角形,∴∠C=60°,当∠PQC=90°时,∠QPC=30°,∴PC=2CQ,∴12﹣3t=6t,解得t=43当∠QPC=90°时,∠PQC=30°,∴CQ=2PC,∴3t=2(12﹣3t),解得t=83∴经过43秒或83秒,△(2)结论:∠AMQ的大小不变.∵△ABC是等边三角形,∴AB=BC,∠ABC=∠C=60°,∵点P,Q的速度相等,∴BP=CQ,在△ABP和△BCQ中,AB=BC∠ABP=∠C∴△AB≌△BCQ(SAS),∴∠BAP=∠CBQ,∴∠AMQ=∠PAB+∠ABQ=∠CBQ+∠ABQ=∠ABC=60°.【点睛】本题考查等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.24、作图见解析,点D到AC的距离为:【分析】根据三角形的面积公式,只需过点A和BC的中点D画直线即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 单位管理制度呈现大全【员工管理】十篇
- 《物业管理服务业》课件
- 三年级数学数学广角课件
- 2024年农业综合开发和扶贫开发工作总结
- 2024年公司劳动社保科上半年的工作总结
- 空调机运输协议三篇
- 农业产品销售主管工作总结
- 通信科技前台工作总结
- 家政服务前台工作总结
- 机电装备话务员工作总结
- 年产30万吨高钛渣生产线技改扩建项目环评报告公示
- 07221美术设计与创意
- 2023年拓展加盟经理年终总结及下一年计划
- 网络安全技术及应用 第5版 习题及答案 贾铁军 习题集 第1章
- 有限空间作业审批表
- 认罪认罚悔罪书(4篇)
- 烟花采购协议书
- 高考作文模拟写作:“善言”与“敢言”+导写及范文
- 《建筑施工承插型盘扣式钢管支架安全技术规程》 JGJ231-2010
- 视频监控维护合同
- 国开大学2023年01月22588《管理线性规划入门》期末考试参考答案
评论
0/150
提交评论