版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省厦门市第一中学数学八上期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是()A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=CD2.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD3.下列多项式中可以用平方差公式进行因式分解的有()①;②;③;④;⑤;⑥A.2个 B.3个 C.4个 D.5个4.已知一组数据:92,94,98,91,95的中位数为a,方差为b,则a+b=()A.98 B.99 C.100 D.1025.如图,△ABC中,点D在BC延长线上,则下列结论一定成立的是()A.∠1=∠A+∠B B.∠1=∠2+∠AC.∠1=∠2+∠B D.∠2=∠A+∠B6.一个三角形的三边长分别为,则这个三角形的形状为()A.钝角三角形 B.直角三角形 C.锐角三角形 D.形状不能确定7.一个多边形的各个内角都等于120°,则它的边数为()A.3 B.6 C.7 D.88.自从太原市实施“煤改气”“煤改电”清洁供暖改造工程以来,空气质量明显好转.下表是年月日太原市各空气质量监测点空气质量指数的统计结果:监测点尖草坪金胜巨轮南寨上兰村桃园坞城小店空气质量指数等级优优优优优优良优这一天空气质量指数的中位数是()A. B. C. D.9.如图,将一副直角三角板拼在一起得四边形ABCD,∠ACB=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F点,若AB=6cm,点D′到BC的距离是(
)A. B. C. D.10.平顶山市教体局要从甲、乙、丙三位教师中,选出一名代表,参加“学习强国”教育知识竞赛.经过5次比赛,每人平均成绩均为95分,方差如表:选手甲乙丙方差0.0180.0170.015则这5次比赛成绩比较稳定的是()A.甲 B.乙 C.丙 D.无法确定11.已知某多边形的内角和比该多边形外角和的2倍多,则该多边形的边数是()A.6 B.7 C.8 D.912.把19547精确到千位的近似数是()A. B. C. D.二、填空题(每题4分,共24分)13.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.14.在底面直径为3cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为____cm.(结果保留π)15.如图,已知,点A在边OX上,,过点A作于点C,以AC为一边在内作等边三角形ABC,点P是围成的区域(包括各边)内的一点,过点P作交OX于点D,作交OY于点E,则的最大值与最小值的积是______.16.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=_____.17.如图,在中,,是的中点,,垂足为,,则的度数是______.18.计算:______.三、解答题(共78分)19.(8分)问题背景如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.类比探究如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明.(2)△DEF是否为正三角形?请说明理由.(3)进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.20.(8分)如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(3,2),C(2,3)均在正方形网格的格点上.(1)画出△ABC关于x轴对称的图形△A1B1C1并写出顶点A1,B1,C1的坐标;(2)求△A1B1C1的面积.21.(8分)如图,在中,,点为直线上一动点,连接,以为直角边作等腰直角三角形.(1)如图1,若当点在线段上时(不与点重合),证明:;(2)如图2,当点在线段的延长线上时,试猜想与的数量关系和位置关系,并说明理由.22.(10分)在中,点是边上的中点,过点作与线段相交的直线,过点作于,过点作于.(1)如图,如果直线过点,求证:;(2)如图,若直线不经过点,联结,,那么第问的结论是否成立?若成立,给出证明过程;若不成立,请说明理由.23.(10分)计算:-+.24.(10分)如图①:线段AD、BC相交于点O,连接AB、CD,我们把这个图形称为“对顶三角形”,由三角形内角和定理可知:∠A+∠B+∠AOB=∠C+∠D+∠COD,而∠AOB=∠COD,我们得到:∠A+∠B=∠C+∠D.(1)如图②,求∠A+∠B+∠C+∠D+∠E的度数;(2)如图③,∠A+∠B+∠C+∠D+∠E+∠F=°;(3)如图④,∠A+∠B+∠C+∠D+∠E+∠F+∠G=°;25.(12分)化简:(1)(2)(3)(4)26.新春佳节来临之际,某商铺用1600元购进一款畅销礼盒,由于面市后供不应求,决定再用6000元购进同款礼盒,已知第二次购进的数量是第一次的3倍,但是第二次的单价比第一次贵2元.求第一次与第二次各购进礼盒多少个?
参考答案一、选择题(每题4分,共48分)1、D【分析】根据垂直定义求出∠CFD=∠AEB=90°,由已知,再根据全等三角形的判定定理推出即可.【详解】添加的条件是AB=CD;理由如下:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△ABE和Rt△DCF中,,∴(HL).故选:D.【点睛】本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.2、D【详解】试题分析:添加A可以利用ASA来进行全等判定;添加B可以利用SAS来进行判定;添加C选项可以得出AD=AE,然后利用SAS来进行全等判定.考点:三角形全等的判定3、C【分析】根据平方差公式的结构特点,通过变形,然后得到答案.【详解】解:①,不符合平方差公式结构,故①错误;②,符合平方差公式结构,故②正确;③,符合平方差公式结构,故③正确;④,符合平方差公式结构,故④正确;⑤,符合平方差公式结构,故⑤正确;⑥,不符合平方差公式结构,故⑥错误;∴可以用平方差公式进行因式分解的有:②③④⑤,共4个;故选:C.【点睛】本题考查了平方差公式因式分解,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.4、C【分析】分别根据中位数和方差的定义求出a、b,然后即可求出答案.【详解】数据:92,94,98,91,95从小到大排列为91,92,94,95,98,处于中间位置的数是94,则该组数据的中位数是94,即a=94,该组数据的平均数为×(92+94+98+91+95)=94,其方差为×[(92﹣94)2+(94﹣94)2+(98﹣94)2+(91﹣94)2+(95﹣94)2]=6,所以b=6,所以a+b=94+6=100,故选C.【点睛】本题考查了中位数和方差,熟练掌握中位数和方差的定义以及求解方法是解题的关键.5、A【分析】根据三角形外角性质逐一判断即可得答案.【详解】∵∠1是△ABC的一个外角,∴∠1=∠A+∠B,故A选项说法一定成立,∠1与∠2+∠A的关系不确定,故B选项说法不一定成立,∠1与∠2+∠B的关系不确定,故C选项说法不一定成立,∠2与∠A+∠B的关系不确定,故D选项说法不一定成立,故选:A.【点睛】本题考查三角形外角得性质,三角形的一个外角,等于和它不相邻得两个内角得和;熟练掌握三角形外角性质是解题关键.6、B【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:∵,,∴∴∴这个三角形一定是直角三角形,
故选:B.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7、B【解析】试题解析:∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°-120°=10°,∴边数n=310°÷10°=1.故选B.考点:多边形内角与外角.8、B【分析】根据中位数的定义即可求解.【详解】把各地的空气质量指数从小到大排列为:19,23,27,28,39,45,48,61,故中位数为=33.5,故选B.【点睛】此题主要考查中位数的求解,解题的关键是熟知中位数的定义.9、C【解析】分析:连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′,于是得到∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.详解:连接CD′,BD′,过点D′作D′G⊥BC于点G,∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,∵AE=EC,∴AD′=CD′=4,在△ABD′和△CBD′中,AB=BCBD′=BD′AD′=CD′,∴△ABD′≌△CBD′(SSS),∴∠D′BG=45°,∴D′G=GB,设D′G长为xcm,则CG长为(6−x)cm,在Rt△GD′C中x2+(6−x)2=(4)2,解得:x1=3−6,x2=3+6(舍去),∴点D′到BC边的距离为(3−6)cm.故选C.点睛:此题主要考查了折叠的性质,全等三角形的判定与性质和锐角三角函数关系以及等边三角形的判定与性质等知识,利用垂直平分线的性质得出点E,D′关于直线AC对称是解题关键.10、C【分析】根据方差的意义求解即可.【详解】解:∵这3位教师的平均成绩相等,而s丙2<s乙2<s甲2,∴这3人中丙的成绩最稳定,故选:C.【点睛】本题主要考查了方差的含义及应用,方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.11、B【分析】多边形的内角和比外角和的2倍多180°,而多边形的外角和是360°,则内角和是900度,n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【详解】解:根据题意,得
(n-2)•180=360×2+180,
解得:n=1.
则该多边形的边数是1.
故选:B.【点睛】此题主要考查了多边形内角和定理和外角和定理,只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.12、C【分析】先把原数化为科学记数法,再根据精确度,求近似值,即可.【详解】19547=≈.故选C.【点睛】本题主要考查求近似数。掌握四舍五入法求近似数,是解题的关键.二、填空题(每题4分,共24分)13、1【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=1cm.故填1.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.14、.【详解】试题分析:如图所示,∵无弹性的丝带从A至C,∴展开后AB=3πcm,BC=3cm,由勾股定理得:AC==cm.故答案为.考点:1.平面展开-最短路径问题;2.最值问题.15、1【分析】结合题意,得四边形ODPE是平行四边形,从而得到;结合点P是围成的区域(包括各边)内的一点,推导得当点P在AC上时,取最小值;当点P与点B重合时,取最大值;再分别根据两种情况,结合平行四边形、等边三角形、勾股定理的性质计算,即可完成求解.【详解】过点P做交于点H∵∴∵∴∴∵,∴四边形ODPE是平行四边形∴∴∴∵点P是围成的区域(包括各边)内的一点结合图形,得:当点P在AC上时,取最小值;当点P与点B重合时,取最大值;当点P在AC上时,∵,∴∴最小值;当点P与点B重合时,如下图,AC和BD相交于点G∴∵,,∴,,∵等边三角形ABC∴,∴∴∴∴GB是等边三角形ABC的角平分线∴又∵,即∴是的中位线∴∴,∴∵∴∴∴∴最大值∴最大值与最小值的积故答案为:1.【点睛】本题考查了平行四边形、勾股定理、直角三角形、等边三角形、等边三角形中位线、平行线的知识;解题的关键是熟练掌握平行线、平行四边形、等边三角形、勾股定理的性质,从而完成求解.16、240°【解析】已知等边三角形的顶角为60°,根据三角形的内角和定理可得两底角和=180°-60°=120°;再由四边形的内角和为360°可得∠α+∠β=360°-120°=240°.故答案是:240°.17、65【分析】首先根据三角形的三线合一的性质得到AD平分∠BAC,然后求得其一半的度数,从而求得答案.【详解】∵AB=AC,D为BC的中点,∴∠BAD=∠CAD,∵∠BAC=50°,∴∠DAC=25°,∵DE⊥AC,∴∠ADE=90°−25°=65°,故答案为65°.【点睛】本题考查了等腰三角形的性质,解题的关键是了解等腰三角形三线合一的性质,难度不大.18、【分析】先计算积的乘方,再利用单项式除单项式法则计算.【详解】解:,故答案为:.【点睛】本题考查积的乘方公式,单项式除单项式.
单项式除以单项式,把单项式的系数、同底数幂分别相除后,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.三、解答题(共78分)19、(1)见解析;(1)△DEF是正三角形;理由见解析;(3)c1=a1+ab+b1【解析】试题分析:(1)由正三角形的性质得∠CAB=∠ABC=∠BCA=60°,AB=BC,证出∠ABD=∠BCE,由ASA证明△ABD≌△BCE即可;、(1)由全等三角形的性质得出∠ADB=∠BEC=∠CFA,证出∠FDE=∠DEF=∠EFD,即可得出结论;(3)作AG⊥BD于G,由正三角形的性质得出∠ADG=60°,在RtΔADG中,DG=b,AG=b,在RtΔABG中,由勾股定理即可得出结论.试题解析:(1)△ABD≌△BCE≌△CAF;理由如下:∵△ABC是正三角形,∴∠CAB=∠ABC=∠BCA=60°,AB=BC,∵∠ABD=∠ABC﹣∠1,∠BCE=∠ACB﹣∠3,∠1=∠3,∴∠ABD=∠BCE,在△ABD和△BCE中,,∴△ABD≌△BCE(ASA);(1)△DEF是正三角形;理由如下:∵△ABD≌△BCE≌△CAF,∴∠ADB=∠BEC=∠CFA,∴∠FDE=∠DEF=∠EFD,∴△DEF是正三角形;(3)作AG⊥BD于G,如图所示:∵△DEF是正三角形,∴∠ADG=60°,在Rt△ADG中,DG=b,AG=b,在Rt△ABG中,c1=(a+b)1+(b)1,∴c1=a1+ab+b1.考点:1.全等三角形的判定与性质;1.勾股定理.20、(1)见解析,A1(0,-1),B1(3,-1),C1(1,-3);(1)1【分析】(1)根据关于x轴对称的点的坐标特征写出顶点A1,B1,C1的坐标,然后描点即可;(1)用一个矩形的面积分别减去三个三角形的面积去计算△A1B1C1的面积.【详解】(1)如图,△A1B1C1为所作;A1(0,-1),B1(3,-1),C1(1,-3);(1)△A1B1C1的面积=1×3-×1×1-×3×1-×1×1=1.【点睛】本题考查了轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.21、(1)证明见解析;(2)CF=BD,CF⊥BD.理由见解析.【分析】(1)根据已知条件证明∠CAF=∠BAD,即可得到△ACF≌△ABD;(2)根据等腰三角形的性质证明∠CAF=∠BAD,证明△ACF≌△ABD,CF=BD,∠ACF=∠B,即可得结果;【详解】解:(1)∵∠BAC=90°,△ADF是等腰直角三角形,∴∠CAF+∠CAD=90°,∠BAD+∠ACD=90°,AD=AF,∴∠CAF=∠BAD,在△ACF和△ABD中,AB=AC,∠CAF=∠BAD,AD=AF,∴△ACF≌△ABD(SAS),(2)CF=BD,CF⊥BD.理由如下:∵△ADF是等腰直角三角形,∴AD=AF,∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,AB=AC,∠CAF=∠BAD,AD=AF,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD,∴CF=BD,CF⊥BD.【点睛】本题主要考查了三角形知识点综合,准确根据全等证明是解题的关键.22、(1)详见解析;(2)成立,理由详见解析【分析】(1)由“AAS”可证△BQN≌△CQM,可得QM=QN;(2)延长NQ交CM于E,由“ASA”可证△BQN≌△CQE,可得QE=QN,由直角三角形的性质可得结论.【详解】(1)点是边上的中点,,,,,且,,,;(2)仍然成立,理由如下:如图,延长交于,点是边上的中点,,,,,,且,,,,且,.【点睛】本题考查了全等三角形的判定和性质,直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.23、1【分析】根据立方根和算数平方根的运算法则进行计算即可.【详解】解:原式=-1-1+5=1.【点睛】本题考查了立方根和算数平方根,掌握运算法则是解题关键.24、(1)180°;(2)360°;(3)540°【分析】(1)连接BC,如图1,可知:∠EBC+∠DCE=∠D+∠E,根据等量代换和三角形内角和即可求解;(2)连接AD,如图2,可知:∠EDA+∠FAD=∠E+∠F,根据等量代换和四边形内角和即可求解;(3)连接CF,如图3,可知:∠DCF+∠EFC=∠E+∠D,根据等量代换和五边形内角和即可求解.【详解】解:(1)连接BC,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物联网技术应用与推广合作协议
- Primulic-acid-I-Standard-生命科学试剂-MCE
- 动植物分类教学设计计划
- 班级旅游与社交技能培养计划
- 2024年国际版权交易许可合同
- 2024年工厂网络安全防护服务合同
- 岭南师范学院《网球Ⅰ》2021-2022学年第一学期期末试卷
- 岭南师范学院《数学建模》2021-2022学年第一学期期末试卷
- 2024年学校教学楼租约
- 2024年临时授权:指定第三方代为还款协议
- 电工基础知识培训课程
- 广东省2024-2025学年高三上学期10月份联考历史试卷 - 副本
- 工会采购管理制度
- 2024-2030年中国软件测试行业现状分析及投资风险预测报告
- 2024-2030年中国花青素市场销售状况与消费趋势预测报告
- module-5剑桥BEC商务英语-中级-课件-答案-词汇讲课教案
- 旅馆业设施布局与室内设计考核试卷
- 2024年消防知识竞赛考试题库300题(含答案)
- 2024中国船舶报社公开招聘采编人员1人高频难、易错点500题模拟试题附带答案详解
- 中图版2024-2025学年八年级地理上册期中卷含答案
- 室内装修投标方案(技术方案)
评论
0/150
提交评论