版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖州市重点中学八年级数学第一学期期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列条件中,不能判定△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.∠A=∠B=∠CC.∠B=50°,∠C=40° D.a=5,b=12,c=132.如图,已知,.若要得到,则下列条件中不符合要求的是()A. B. C. D.3.计算:等于()A.3 B.-3 C.±3 D.814.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC5.以下列各组线段的长为边,能组成三角形的是()A.2、4、7 B.3、5、2 C.7、7、3 D.9、5、36.下列表述中,能确定准确位置的是()A.教室第三排 B.聂耳路 C.南偏东 D.东经,北纬7.如图,,、分别是、的中点,则下列结论:①,②,③,④,其中正确有()A.个 B.个 C.个 D.个8.如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是()A.(a+b)(a﹣b)=a2﹣b2 B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2 D.a(a﹣b)=a2﹣ab9.若,则的结果是()A.7 B.9 C.﹣9 D.1110.已知一个等腰三角形的两边长是3cm和7cm,则它的周长为()A.13cm B.17cm C.13或17cm D.10cm11.王师傅想做一个三角形的框架,他有两根长度分别为11cm和12cm的细木条,需要将其中一根木条分为两段,如果不考虑损耗和接头部分,那么他可以把()分为两截.A.11cm的木条 B.12cm的木条 C.两根都可以 D.两根都不行12.下列计算正确的是()A.a3•a2=a6 B.(﹣2a2)3=﹣8a6 C.(a+b)2=a2+b2 D.2a+3a=5a2二、填空题(每题4分,共24分)13.如图,中,,,、分别平分、,过点作直线平行于,交、于、,则的周长为______.14.若关于x的分式方程无解,则实数m=_______.15.如图所示,∠1=130°,则∠A+∠B+∠C+∠D+∠E+∠F的度数为_____.16.关于,的二元一次方程组的解是,如图,在平面直角坐标系中,直线与直线相交于点,则点的坐标为__________.17.甲、乙二人同时从A地出发,骑车20千米到B地,已知甲比乙每小时多行3千米,结果甲比乙提前20分钟到达B地,求甲、乙二人的速度。若设甲用了x小时到达B地,则可列方程为_____________________18.若分式有意义,则实数的取值范围是_______.三、解答题(共78分)19.(8分)在如图的方格中,每个小正方形的边长都为1,△ABC的顶点均在格点上。在建立平面直角坐标系后,点B的坐标为(-1,2).(1)把△ABC向下平移8个单位后得到对应的△,画出△,并写出坐标;(2)以原点O为对称中心,画出与△关于原点O对称的△,并写出点的坐标.20.(8分)如图,已知,,.(1)请你判断与的数量关系,并说明理由;(2)若,平分,试求的度数.21.(8分)已知:如图,四边形ABCD中,AD∥BC,∠B=90°,AD=AB=4,BC=7,点E在BC上,将△CDE沿DE折叠,点C恰好落在AB边上的点F处.(1)求线段DC的长度;(2)求△FED的面积.22.(10分)在学习轴对称的时候,老师让同学们思考课本中的探究题.如图(1),要在燃气管道l上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在l上找几个点试一试,能发现什么规律?你可以在上找几个点试一试,能发现什么规律?聪明的小华通过独立思考,很快得出了解决这个问题的正确办法.他把管道l看成一条直线(图(2)),问题就转化为,要在直线l上找一点P,使AP与BP的和最小.他的做法是这样的:①作点B关于直线l的对称点B′.②连接AB′交直线l于点P,则点P为所求.请你参考小华的做法解决下列问题.如图在△ABC中,点D、E分别是AB、AC边的中点,BC=6,BC边上的高为4,请你在BC边上确定一点P,使△PDE得周长最小.(1)在图中作出点P(保留作图痕迹,不写作法).(2)请直接写出△PDE周长的最小值:.23.(10分)如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.24.(10分)先化简,再化简:,请你从﹣2<a<2的整数解中选取一个合适的数代入求值.25.(12分)问题发现:如图,在中,,为边所在直线上的动点(不与点、重合),连结,以为边作,且,根据,得到,结合,得出,发现线段与的数量关系为,位置关系为;(1)探究证明:如图,在和中,,,且点在边上滑动(点不与点、重合),连接.①则线段,,之间满足的等量关系式为_____;②求证:;(2)拓展延伸:如图,在四边形中,.若,,求的长.26.为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)补全频数分布直方图;(2)表示户外活动时间1小时的扇形圆心角的度数是多少;(3)本次调查学生参加户外活动时间的众数是多少,中位数是多少;(4)本次调查学生参加户外活动的平均时间是否符合要求?
参考答案一、选择题(每题4分,共48分)1、A【详解】∵∠A:∠B:∠C=3:4:5,∴∠A=180°÷(3+4+5)×3=45°,∠B=180°÷(3+4+5)×4=60°,∠C=180°÷(3+4+5)×5=75°,∴△ABC不是直角三角形,故A符合题意;∵∠A=∠B=∠C,∴∠A=30°,∠B=60°,∠C=90°,∴△ABC是直角三角形,故B不符合题意;∵∠B=50°,∠C=40°,∴∠A=180°-50°-40°=90°,∴△ABC是直角三角形,故C不符合题意;∵a=5,b=12,c=13,∴a2+b2=c2,∴△ABC是直角三角形,故D不符合题意;故选A2、C【分析】由已知,,故只需添加一组角相等或者BC=EF即可.【详解】解:A:添加,则可用AAS证明;B:添加,则可用ASA证明;C:添加,不能判定全等;D:添加,则,即BC=EF,满足SAS,可证明.故选C.【点睛】本题主要考查全等三角形的判定,掌握三角形全等的判定方法是解题的关键,注意ASS不能判定全等.3、A【分析】=3,9的算术平方根等于3,需注意的是算术平方根必为非负数,即可得出结果.【详解】=3故选:A【点睛】本题主要考查了算术平方根的定义,一个正数只有一个算术平方根,1的算术平方根是1.4、D【解析】根据平行四边形判定定理进行判断:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.故选D.考点:平行四边形的判定.5、C【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:根据三角形任意两边的和大于第三边,可知
A、2+4<7,不能够组成三角形,故A错误;
B、2+3=5,不能组成三角形,故B错误;
C、7+3>7,能组成三角形,故C正确;
D、3+5<9,不能组成三角形,故D错误;
故选:C.【点睛】本题考查了能够组成三角形三边的条件,熟练掌握构成三角形的条件是解题的关键.6、D【分析】根据坐标的定义对各选项分析判断即可;【详解】解:选项A中,教室第三排,不能确定具体位置,故本选项错误;选项B中,聂耳路,不能确定具体位置,故本选项错误;选项C中,南偏东,不能确定具体位置,故本选项错误;选项D中,东经,北纬,能确定具体位置,故本选项错误;【点睛】本题主要考查了坐标确定位置,掌握坐标的定义是解题的关键.7、C【分析】根据三角形的中位线定理“三角形的中位线平行于第三边”可得,,再由45°角可证△ABQ为等腰直角三角形,从而可得可得,进而证明,利用三角形的全等性质求解即可.【详解】解:如图所示:连接,延长交于点,延长交于,延长交于.,,,,点为两条高的交点,为边上的高,即:,由中位线定理可得,,,故①正确;,,,,,,根据以上条件得,,,故②正确;,,,故③成立;无法证明,故④错误.综上所述:正确的是①②③,故选C.【点睛】本题考点在于三角形的中位线和三角形全等的判断及应用.解题关键是证明.8、A【分析】分别计算出两个图形中阴影部分的面积即可.【详解】图1阴影部分面积:a2﹣b2,图2阴影部分面积:(a+b)(a﹣b),由此验证了等式(a+b)(a﹣b)=a2﹣b2,故选:A.【点睛】此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.9、D【分析】根据完全平方的特征对式子进行整理,即(a-)2+2,最后整体代入进行计算可得结果.【详解】解:∵,∴=(a﹣)2+2=(﹣3)2+2=9+2=11,故选:D.【点睛】本题主要考查了代数式的求值,解题的关键是掌握完全平方公式.10、B【详解】由题意得:三角形的三边可能为3、3、7或3、7、7,然后根据三角形的三边关系可知只能是3、7、7,∴周长为3+7+7=17cm.故选B.11、B【分析】根据三角形的三边关系:三角形的任意两边之和大于第三边解答即可.【详解】解:∵三角形的任意两边之和大于第三边,∴两根长度分别为11cm和12cm的细木条做一个三角形的框架,可以把12cm的木条分为两截.故选:B.【点睛】本题考查了三角形的三边关系在实际中的应用,属于基本题型,熟练掌握三角形的三边关系是关键.12、B【解析】A选项错误,a3·a2=a5;B选项正确;C选项错误,(a+b)2=a2+2ab+b2;D选项错误,2a+3a=5a.故选B.点睛:熟记公式:(1)(an)m=amn,(2)am·an=am+n,(3)(a±b)2=a2±2ab+b2.二、填空题(每题4分,共24分)13、1【分析】根据分别平分,EFBC,得∠EBD=∠EDB,从而得ED=EB,同理:得FD=FC,进而可以得到答案.【详解】∵分别平分,∴∠EBD=∠CBD,∵EFBC,∴∠EDB=∠CBD,∴∠EBD=∠EDB,∴ED=EB,同理:FD=FC,∴的周长=AE+AF+EF=AE+AF+ED+FD=AE+AF+EB+FC=AB+AC=6+7=1.故答案是:1.【点睛】本题主要考查角平分线和平行线的性质定理,掌握“双平等腰”模型,是解题的关键.14、3或1.【解析】解:方程去分母得:1+3(x﹣1)=mx,整理得:(m﹣3)x=2.①当整式方程无解时,m﹣3=0,m=3;②当整式方程的解为分式方程的增根时,x=1,∴m﹣3=2,m=1.综上所述:∴m的值为3或1.故答案为3或1.15、260°.【分析】利用三角形的外角等于不相邻的两个内角之和以及等量代换进行解题即可【详解】解:如图:∠1=∠B+∠C,∠DME=∠A+∠E,∠ANF=∠F+∠D,∵∠1=∠DME+∠ANF=130°,∴∠A+∠B+∠C+∠D+∠E+∠F=2×130°=260°.故答案为260°.【点睛】本题主要考查三角形的外角性质,关键在于能够把所有的外角关系都找到16、【分析】方程组的解即是交点P的坐标.【详解】∵,,∴方程组的解即是函数图象的交点P的横纵坐标,∴点P的坐标是,故答案为:.【点睛】此题考查两个一次函数的交点坐标与二元一次方程组的解的关系,正确理解两者间的关系并运用解题是关系.17、【分析】设甲用了x小时到达B地,则乙用了小时到达B地,然后根据甲比乙每小时多行3千米即可列出方程.【详解】解:设甲用了x小时到达B地,则乙用了小时到达B地由题意得:.故答案为.【点睛】本题考查了分式方程的应用,弄清题意、明确等量关系成为解答本题的关键.18、【分析】根据分式有意义的条件,即可求出x的取值范围.【详解】解:∵分式有意义,∴,∴;故答案为:.【点睛】本题考查了分时有意义的条件,解题的关键是熟练掌握分式有意义的条件,即分母不等于0.三、解答题(共78分)19、(1)画图见解析;A1(-5,-6);(2)画图见解析;B2(1,6).【分析】(1)根据网格结构找出点A、B、C向下平移8个单位的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1坐标;(2)根据网格结构找出点A1、B1、C1关于原点O对称的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点B2坐标.【详解】(1)△A1B1C1如图所示,A1(﹣5,﹣6);(2)△A2B2C2如图所示,B2(1,6)【点睛】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.20、(1)∠1=∠ABD,证明见解析;(2)∠ACF=55°.【分析】(1)先根据在平面内,垂直于同一条直线的两条直线互相平行得出BC∥DE,再根据平行线的性质结合可得∠2=∠CBD,从而可得CF∥DB得出∠1=∠ABD;(2)利用平行线的性质以及角平分线的定义,即可得出∠2的度数,再根据∠ACB为直角,即可得出∠ACF.【详解】解:(1)∠1=∠ABD,理由:
∵BC⊥AE,DE⊥AE,
∴BC∥DE,
∴∠3+∠CBD=180°,
又∵∠2+∠3=180°,
∴∠2=∠CBD,
∴CF∥DB,
∴∠1=∠ABD.
(2)∵∠1=70°,CF∥DB,
∴∠ABD=70°,
又∵BC平分∠ABD,
∴,
∴∠2=∠DBC=35°,
又∵BC⊥AG,
∴∠ACF=90°-∠2=90°-35°=55°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.21、(1)5;(2)【分析】(1)通过证明四边形ABMD是正方形,可得DM=BM=AB=4,CM=3,由勾股定理可求CD的长.(2)由折叠的性质可得EF=CE,DC=DF=5,由“HL“可证Rt△ADF≌Rt△MDC,可得AF=CM=3,由勾股定理可求EC的长,即可求解.【详解】解:(1)过点D作DM⊥BC于M.∵AD∥BC,∠B=90°,∴∠A=90°,且∠B=90°,DM⊥BC,∴四边形ABMD是矩形,且AD=AB,∴四边形ABMD是正方形.∴DM=BM=AB=4,CM=3,在Rt△DMC中,CD===5,(2)∵将△CDE沿DE折叠,∴EF=CE,DC=DF=5,且AD=DM,∴Rt△ADF≌Rt△MDC(HL),∴AF=CM=3,∴BF=1,∵EF2=BF2+BE2,∴CE2=1+(7-CE)2,∴CE=∴S△FED=×CE×DM=×=【点睛】本题考查了折叠的性质,正方形的判定,全等三角形的判定和性质,勾股定理,求出DM的长是本题的关键.22、(1)见解析(2)2【分析】(1)根据提供材料DE不变,只要求出DP+PE的最小值即可,作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求.(2)利用中位线性质以及勾股定理得出D′E的值,即可得出答案:【详解】解:(1)作D点关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求.(2)∵点D、E分别是AB、AC边的中点,∴DE为△ABC中位线.∵BC=6,BC边上的高为1,∴DE=3,DD′=1.∴.∴△PDE周长的最小值为:DE+D′E=3+5=2.23、(1)∠1+∠2=90°;理由见解析;(2)(2)BE∥DF;理由见解析.【解析】试题分析:(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.试题解析:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.考点:平行线的判定与性质.24、,当时,原式=2【分析】先利用分式混合运算的顺序和法则对分式进行化简,然后从中找到使分式有意义且不为0的值代入即可求值.【详解】原式=∵a+1≠0且a≠0,∴a≠-1且a≠0,∴当a=1时,原式=.【点睛】本题主要考查分式的化简求值,掌握分式混合运算的顺序和法则是解题的关键.25、(1)①BC=CE+CD;②见解析;(2)AD=6.【分析】(1)①根据题中示例方法,证明△BAD≌△CAE,得到BD=CE,从而得出BC=CE+CD;②根据△BAD≌△CAE,得出∠ACE=45°,从而得到∠BCE=90°,则有DE2=CE2+CD2,再根据可得结论;(2)过点A作AG⊥AD,使AG=AD,连接CG、DG,可证明△BAD≌△CAG,得到CG=BD,在直角△CDG中,根据CD的长求出DG的长,再由DG和AD的关系求出AD.【详解】解:(1)①如图2,在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∴BC=BD+CD=CE+CD,故答案为:BC=BD+CD=CE+CD.②∵△BAD≌△CAE,∴∠B=∠ACE=45°,∵∠ACB=45°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重庆人文科技学院《高级程序设计语言实验》2021-2022学年期末试卷
- 重庆三峡学院《高频电子线路》2022-2023学年期末试卷
- 安全技术交底制度
- 重庆人文科技学院《居住区景观规划设计》2022-2023学年第一学期期末试卷
- 茶叶加工需求问题研究报告
- 重庆财经学院《神经网络与深度学习综合实践》2022-2023学年期末试卷
- 重庆财经学院《会展项目综合运营一》2021-2022学年第一学期期末试卷
- 策划案课程设计
- 白银车库耐磨地坪施工方案
- 仲恺农业工程学院《园林史》2022-2023学年第一学期期末试卷
- 2023年象山县特殊教育岗位教师招聘考试笔试模拟试题及答案解析
- GB/T 28222-2011服务标准编写通则
- GB/T 20671.7-2006非金属垫片材料分类体系及试验方法第7部分:非金属垫片材料拉伸强度试验方法
- GB/T 14337-1993合成短纤维断裂强力及断裂伸长试验方法
- GB/T 10001.4-2021公共信息图形符号第4部分:运动健身符号
- 南京市芳草园小学苏教版五年级数学上册《列举法解决问题的策略》活动单(区级公开课定稿)
- 修剪指甲培智五年级上册生活适应教案
- 计算机信息系统灾难恢复计划(完整版)资料
- 脚手架搭设及基本知识教程课件
- 特种作业人员体检表
- 冲积平原的形成(课件)-高考地理一轮复习课件
评论
0/150
提交评论