版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京海淀区2025届八年级数学第一学期期末质量检测试题试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列命题是假命题的是().A.同旁内角互补,两直线平行B.线段垂直平分线上的点到线段两个端点的距离相等C.相等的角是对顶角D.角是轴对称图形2.若分式,则的值为()A.1 B.2 C.3 D.43.下列长度的三条线段能组成三角形的是()A. B. C. D.4.如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=110°,则∠EAF为()A.35° B.40° C.45 D.50°5.下列计算,正确的是()A.a2﹣a=a B.a2•a3=a6 C.a9÷a3=a3 D.(a3)2=a66.边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为()A. B. C. D.7.已知等腰三角形两边长分别为6cm、2cm,则这个三角形的周长是()A.14cm B.10cm C.14cm或10cm D.12cm8.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2 B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2 D.a2﹣b2=(a+b)(a﹣b)9.已知不等式x﹣1≥0,此不等式的解集在数轴上表示为()A. B. C. D.10.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7二、填空题(每小题3分,共24分)11.已知与互为相反数,则__________12.若x2-14x+m2是完全平方式,则m=______.13.比较大小:3______.(填“>”、“<”、“=”)14.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.15.分解因式:=.16.在Rt△ABC中,∠A=90°,∠C=60°,点P是直线AB上不同于A、B的一点,且PC=4,∠ACP=30°,则PB的长为_____.17.如下图,在中,,的垂直平分线交于点,垂足为.当,时,的周长是__________.18.在底面直径为3cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为____cm.(结果保留π)三、解答题(共66分)19.(10分)(1)计算:()×3(2)解方程组20.(6分)金堂赵镇某旅馆的客房有三人间和两人间两种,三人间每人每天40元,两人间每人每天50元.国庆节期间,一个48人的外地旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费2160元.求两种客房各租住了多少间?21.(6分)如图,直线l₁:y=x+2与直线l₂:y=kx+b相交于点P(1,m)(1)写出k、b满足的关系;(2)如果直线l₂:y=kx+b与两坐标轴围成一等腰直角三角形,试求直线l₂的函数表达式;(3)在(2)的条件下,设直线l₂与x轴相交于点A,点Q是x轴上一动点,求当△APQ是等腰三角形时的Q点的坐标.22.(8分)材料:数学兴趣一小组的同学对完全平方公式进行研究:因,将左边展开得到,移项可得:.数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数、,都存在,并进一步发现,两个非负数、的和一定存在着一个最小值.根据材料,解答下列问题:(1)__________(,);___________();(2)求的最小值;(3)已知,当为何值时,代数式有最小值,并求出这个最小值.23.(8分)物华小区停车场去年收费标准如下:中型汽车的停车费为600元/辆,小型汽车的停车费为400元/辆,停满车辆时能收停车费23000元,今年收费标准上调为:中型汽车的停车费为1000元/辆,小型汽车的停车费为600元/辆,若该小区停车场容纳的车辆数没有变化,今年比去年多收取停车费13000元.(1)该停车场去年能停中、小型汽车各多少辆?(2)今年该小区因建筑需要缩小了停车场的面积,停车总数减少了11辆,设该停车场今年能停中型汽车辆,小型汽车有辆,停车场收取的总停车费为元,请求出关于的函数表达式;(3)在(2)的条件下,若今年该停车场停满车辆时小型汽车的数量不超过中型汽车的2倍,则今年该停车场最少能收取的停车费共多少元?24.(8分)4月23日是世界读书日,总书记说:“读书可以让人保持思维活力,让人得到智慧的启发,让人滋养浩然正气.”倡导读书活动,鼓励师生利用课余时间广泛阅读.期末,学校为了调查这学期学生课外阅读情况,随机抽样调查了.部分学生阅读课外书的本数,并将收集到的数据整理成如图的统计图.(1)这次共调查的学生人数是人,(2)所调查学生读书本数的众数是___本,中位数是__本(3)若该校有800名学生,请你估计该校学生这学期读书总数是多少本?25.(10分)如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为,请解答下列问题:(1)画出关于轴对称的,并写出点的坐标.(2)画出关于轴对称的,并写出点的坐标.26.(10分)如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD≌△AEC.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据平行线、垂直平分线、对顶角、轴对称图形的性质,逐个分析,即可得到答案.【详解】同旁内角互补,则两直线平行,故A正确;线段垂直平分线上的点到线段两个端点的距离相等,故B正确;由对顶角可得是相等的角;相等的角无法证明是对等角,故C错误;角是关于角的角平分线对称的图形,是轴对称图形,故D正确故选:C.【点睛】本题考查了平行线、垂直平分线、对顶角、轴对称图形、角平分线、命题的知识;解题的关键是熟练掌握平行线、垂直平分线、对顶角、轴对称图形、角平分线的性质,从而完成求解.2、D【分析】首先将已知分式通分,得出,代入所求分式,即可得解.【详解】∵∴∴∴=故选:D.【点睛】此题主要考查分式的求值,利用已知分式的值转换形式,即可解题.3、C【分析】根据三角形的三边关系:在一个三角形中,两边之和大于第三边,两边之差小于第三边进行判断即可得解.【详解】A.,不满足三边关系,A选项错误;B.,不满足三边关系,B选项错误;C.满足三边关系,C选项正确;D.,不满足三边关系,D选项错误,故选:C.【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形三边关系的知识是解决本题的关键.4、B【解析】试题分析:根据三角形内角和定理求出∠C+∠B=70°,根据线段垂直平分线的性质得到EC=EA,FB=FA,根据等腰三角形的性质得到∠EAC=∠C,∠FAB=∠B,计算即可.解:∵∠BAC=110°,∴∠C+∠B=70°,∵EG、FH分别为AC、AB的垂直平分线,∴EC=EA,FB=FA,∴∠EAC=∠C,∠FAB=∠B,∴∠EAC+∠FAB=70°,∴∠EAF=40°,故选B.考点:线段垂直平分线的性质.5、D【解析】A、a2-a,不能合并,故A错误;B、a2•a3=a5,故B错误;C、a9÷a3=a6,故C错误;D、(a3)2=a6,故D正确,故选D.6、A【解析】连接AD、DB、DF,求出∠AFD=∠ABD=90°,根据HL证两三角形全等得出∠FAD=60°,求出AD∥EF∥GI,过F作FZ⊥GI,过E作EN⊥GI于N,得出平行四边形FZNE得出EF=ZN=a,求出GI的长,求出第一个正六边形的边长是a,是等边三角形QKM的边长的;同理第二个正六边形的边长是等边三角形GHI的边长的;求出第五个等边三角形的边长,乘以即可得出第六个正六边形的边长.连接AD、DF、DB.∵六边形ABCDEF是正六边形,∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt△ABD和RtAFD中∴Rt△ABD≌Rt△AFD(HL),∴∠BAD=∠FAD=×120°=60°,∴∠FAD+∠AFE=60°+120°=180°,∴AD∥EF,∵G、I分别为AF、DE中点,∴GI∥EF∥AD,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是a,即等边三角形QKM的边长的,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN=a,∵GF=AF=×a=a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ=GF=a,同理IN=a,∴GI=a+a+a=a,即第二个等边三角形的边长是a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是×a;同理第第三个等边三角形的边长是×a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是××a;同理第四个等边三角形的边长是××a,第四个正六边形的边长是×××a;第五个等边三角形的边长是×××a,第五个正六边形的边长是××××a;第六个等边三角形的边长是××××a,第六个正六边形的边长是×××××a,即第六个正六边形的边长是×a,故选A.7、A【解析】由等腰三角形的两边长分别为6cm和2cm,分别从若2cm为腰长,6cm为底边长与若2cm为底边长,6cm为腰长去分析求解即可求得答案.【详解】若2cm为腰长,6cm为底边长,∵2+2=4<6,不能组成三角形,∴不合题意,舍去;若2cm为底边长,6cm为腰长,则此三角形的周长为:2+6+6=14cm.故选A.【点睛】此题考查了等腰三角形的性质与三角形的三边关系.此题比较简单,注意掌握分类讨论思想的应用.8、D【分析】根据面积相等,列出关系式即可.【详解】解:由题意得这两个图形的面积相等,∴a2﹣b2=(a+b)(a-b).故选D.【点睛】本题主要考查对平方差公式的知识点的理解和掌握.掌握平方差公式的结构特征是解题的关键.9、C【分析】根据不等式的性质求出不等式的解集,再在数轴上表示出不等式的解集即可.【详解】解:∵x﹣1≥0,∴x≥1.不等式的解集在数轴上表示的方法:>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.因此不等式x≥1即x﹣1≥0在数轴上表示正确的是C.故选C.10、C【详解】试题解析:①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI和△ACI都是等腰三角形.故选C.考点:画等腰三角形.二、填空题(每小题3分,共24分)11、-8【分析】由题意根据相反数的性质即互为相反数的两数之和为0,进行分析计算即可.【详解】解:∵与互为相反数,∴,解得.故答案为:-8.【点睛】本题考查相反数的性质,熟练掌握相反数的性质即互为相反数的两数之和为0进行分析是解题的关键.12、【分析】根据完全平方公式的结构特点解答即可.【详解】解:∵x2-14x+m2是完全平方式∴x2-14x+m2=x2-2·x·(±1)+(±1)2,∴m=±1.故答案为:±1.【点睛】本题主要考查了完全平方式的结构特点,掌握在完全平方公式中确定平方项和乘积二倍项是解答本题的关键.13、>【分析】首先将3放到根号下,然后比较被开方数的大小即可.【详解】,,故答案为:.【点睛】本题主要考查实数的大小比较,掌握实数大小比较的方法是解题的关键.14、【分析】方法一:利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解;方法二:根据方程组的特点可得方程组的解是,再利用加减消元法即可求出a,b.【详解】详解:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组整理为:解得:方法二:∵关于x、y的二元一次方程组的解是∴方程组的解是解得故答案为:.【点睛】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.15、ab(a+3)(a﹣3).【解析】试题分析:==ab(a+3)(a﹣3).故答案为ab(a+3)(a﹣3).考点:提公因式法与公式法的综合运用.16、1或2【分析】分两种情形分别画出图形即可解问题.【详解】分两种情况讨论:①如图,当点P在线段AB上时.∵∠CAP=90°,∠ACB=60°,∠ACP=30°,∴∠APC=60°,∠B=30°.∵∠APC=∠B+∠PCB,∴∠PCB=∠B=30°,∴PB=PC=1.②当点P'在BA的延长线上时.∵∠P'CA=30°,∠ACB=60°,∴∠P'CB=∠P'CA+∠ACB=90°.∵∠B=30°,P'C=1,∴BP'=2P'C=2.故答案为:1或2.【点睛】本题考查了含30°角的直角三角形,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17、1【分析】根据线段垂直平分线的性质知CD=BD,则△ACD的周长等于AC+AB.【详解】解:∵DE是线段BC的垂直平分线,∠ACB=90°,
∴CD=BD,AD=BD.
又∵在△ABC中,∠ACB=90°,∠B=30°,
∴AC=AB,
∴△ACD的周长=AC+AB=AB=1,
故答案为:1.【点睛】本题考查了含30度角直角三角形的性质和垂直平分线的性质,直角三角形中30°的锐角所对的直角边等于斜边的一半,培养学生运用定理进行推理论证的能力.18、.【详解】试题分析:如图所示,∵无弹性的丝带从A至C,∴展开后AB=3πcm,BC=3cm,由勾股定理得:AC==cm.故答案为.考点:1.平面展开-最短路径问题;2.最值问题.三、解答题(共66分)19、(1)9;(2)【分析】(1)先根据二次根式的乘法法则运算,然后化简后合并即可;(2)利用加减消元法解方程组.【详解】(1)原式=3﹣3=12﹣3=9;(2)①+②得3x=3,解得x=1,把x=1代入①得1+y=4,解得y=3,所以方程组的解为.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解二元一次方程组.20、三人间租住了8间,两人间租住了12间【分析】根据:住在三人间人数+住在二人间人数=总人数,三人间的总费用+二人间总费用=总费用,列出方程组,解方程组即可.【详解】解:设三人间租住了间,两人间租住了间,根据题意得:,解得,答:三人间租住了8间,两人间租住了12间.【点睛】本题考查二元一次方程组的实际应用,准确找出题中的等量关系是解题关键.21、(1)k+b=3;(2)y=﹣x+4;(3)点Q的坐标为:(4±3,0)或Q(﹣2,0)或(1,0).【分析】(1)将点P的坐标代入y=x+2并解得m=3,得到点P(1,3);将点P的坐标代入y=kx+b,即可求解;(2)由y=kx+b与两坐标轴围成一等腰直角三角形可求出直线的k值为﹣1,然后代入P点坐标求出b即可;(3)分AP=AQ、AP=PQ、PQ=AQ三种情况,分别求解即可.【详解】解:(1)将点P的坐标代入y=x+2可得:m=1+2=3,故点P(1,3),将点P的坐标代入y=kx+b可得:k+b=3;(2)∵y=kx+b与两坐标轴围成一等腰直角三角形,∴设该直线的函数图象与x轴,y轴分别交于点(a,0),(0,a),其中a>0,将(a,0),(0,a),代入得:ak+b=0,b=a,∴ak+a=0,即a(k+1)=0,∴k=﹣1,即y=﹣x+b,代入P(1,3)得:﹣1+b=3,解得:b=4,∴直线l2的表达式为:y=﹣x+4;(3)设点Q(m,0),而点A、P的坐标分别为:(4,0)、(1,3),∴AP=,当AP=AQ时,则点Q(4±3,0);当AP=PQ时,则点Q(﹣2,0);当PQ=AQ时,即(1﹣m)2+9=(4﹣m)2,解得:m=1,即点Q(1,0);综上,点Q的坐标为:(4±3,0)或Q(﹣2,0)或(1,0).【点睛】此题把一次函数与等腰三角形的性质相结合,考查了同学们综合运用所学知识的能力,是一道综合性较好的题目,其中(3),要注意分类求解,避免遗漏.22、(1),2;(2);(3)当时,代数式的最小值为1.【分析】(1)根据阅读材料即可得出结论;(2)根据阅读材料介绍的方法即可得出结论;(3)把已知代数式变为,再利用阅读材料介绍的方法,即可得到结论.【详解】(1)∵,,∴,∵,∴;(2)当x时,,均为正数,∴所以,的最小值为.(3)当x时,,,2x-6均为正数,∴由可知,当且仅当时,取最小值,∴当,即时,有最小值.∵x故当时,代数式的最小值为1.【点睛】本题考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.23、(1)该停车场去年能停中型汽车15辆,小型汽车35辆;(2);(3)今年该停车场最少能收取停车费共28600元.【分析】(1)设该停车场去年能停中型汽车辆,小型汽车辆,根据等量关系,列出二元一次方程组,即可求解;(2)由题意得:,根据“总停车费=中型汽车停车费+小型汽车费”,即可得到关于的函数表达式;(3)根据题意,列出关于x的不等式,得到x的取值范围,再根据关于的函数表达式,即可求解.【详解】(1)设该停车场去年能停中型
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度商标许可使用合同的许可方式3篇
- 维修合同范例学校
- 港式清单对应合同模板
- 二零二四年度干粉砂浆价格指数联动合同2篇
- 加油站加油合同范本
- 洗涤设备租赁合同模板
- 盒纸巾购销合同范例
- 股分提成合同模板
- 旅游服务协议合同范例
- vi甲方合同范例
- 第一例应用ECMO患者护理查房
- 2024-2030年中国肉羊养殖行业市场运营模式及未来发展动向预测报告
- 基于区块链技术的农产品追溯与智能化管理方案
- 第四单元(学习任务单)七年级语文上册大单元教学名师备课系列(统编版2024)
- 浙江省杭州市2024-2025学年高一上学期期中考试语文试卷(含答案)
- 【《LKJ2000型列车监控记录装置的操作规程及故障处理探究》10000字(论文)】
- 带您走进西藏学习通超星期末考试答案章节答案2024年
- 六 比的认识(单元测试)-2024-2025学年六年级上册数学北师大版
- 中医医院绩效考核细则及评分办法(中医药工作)
- 《劳动创造幸福奋斗成就梦想》主题班会
- 项目三学和面(课件)六年级上册劳动(人教版)
评论
0/150
提交评论