版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省开封市东南区数学八年级第一学期期末学业水平测试试题测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.已知,且,则代数式的值等于()A. B. C. D.2.将变形正确的是()A. B.C. D.3.点P(-2,3)到x轴的距离是()A.2 B.3 C. D.54.A,B两地相距80km,甲、乙两人骑车分别从A,B两地同时相向而行,他们都保持匀速行驶.如图,l1,l2分别表示甲、乙两人离B地的距离y(km)与骑车时间x(h)的函数关系.根据图象得出的下列结论,正确的个数是()①甲骑车速度为30km/小时,乙的速度为20km/小时;②l1的函数表达式为y=80﹣30x;③l2的函数表达式为y=20x;④85A.1个 B.2个 C.3个 D.4个5.下列运算正确的是()A.=±4 B.(ab2)3=a3b6C.a6÷a2=a3 D.(a﹣b)2=a2﹣b26.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得-2分,不答的题得0分.已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x-y=20 B.x+y=20C.5x-2y=60 D.5x+2y=607.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,点D是线段AE上的一点,则下列结论错误的是()A.AE⊥BC B.BE=CE C.∠ABD=∠DBE D.△ABD≌△ACD8.下列各式中,是最简二次根式的是()A. B. C. D.9.如图,已知四边形ABCD,连接AC,若AB∥CD,则①∠BAD+∠D=180°,②∠BAC=∠DCA,③∠BAD+∠B=180°,④∠DAC=∠BCA,其中正确的有()A.①②③④ B.①② C.②③ D.①④10.如图,已知在正方形网格中,每个小方格都是边长为1的正方形,A、B两点在格点上,位置如图,点C也在格点上,且△ABC为等腰三角形,则点C的个数为()A.7 B.8 C.9 D.1011.下列命题是假命题的是()A.如果a∥b,b∥c,那么a∥c; B.锐角三角形中最大的角一定大于或等于60°;C.两条直线被第三条直线所截,内错角相等; D.三角形三个内角和等于180°.12.下列各数中是无理数的是()A.﹣1 B.3.1415 C.π D.二、填空题(每题4分,共24分)13.如图,上海实行垃圾分类政策后,各街道、各小区都在积极改造垃圾房,在工地一边的靠墙处,用12米长的栏围一个占面积为20平方米的长方形临时垃圾堆放点,栅栏只围三边,并且开一个2米的小门,方便垃圾桶的搬运.设垂直于墙的一边长为米.根据题意,建立关于的方程是____.14.命题:“三边分别相等的两个三角形全等”的逆命题________15.若关于的方程的解不小于,则的取值范围是_______.16.一个正方形的边长增加2cm,它的面积就增加24cm,这个正方形的边长是______cm.17.不等式组的解集为,则不等式的解集为__________18.函数中,自变量的取值范围是__________.三、解答题(共78分)19.(8分)解不等式组,并把解集在数轴上表示出来.20.(8分)(1)问题:如图在中,,,为边上一点(不与点,重合),连接,过点作,并满足,连接.则线段和线段的数量关系是_______,位置关系是_______.(2)探索:如图,当点为边上一点(不与点,重合),与均为等腰直角三角形,,,.试探索线段,,之间满足的等量关系,并证明你的结论;(3)拓展:如图,在四边形中,,若,,请直接写出线段的长.21.(8分)在矩形ABCD中,,点G,H分别在边AB,DC上,且HA=HG,点E为AB边上的一个动点,连接HE,把△AHE沿直线HE翻折得到△FHE.(1)如图1,当DH=DA时,①填空:∠HGA=度;②若EF∥HG,求∠AHE的度数,并求此时a的最小值;(2)如图3,∠AEH=60°,EG=2BG,连接FG,交边FG,交边DC于点P,且FG⊥AB,G为垂足,求a的值.22.(10分)文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)23.(10分)如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A点C重合,连接BD并延长,在BD延长线上取一点E,使AE=AB,连接CE.(1)若∠AED=10°,则∠DEC=度;(1)若∠AED=a,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;(3)如图1,过点A作AF⊥BE于点F,AF的延长线与EC的延长线交于点H,求证:EH1+CH1=1AE1.24.(10分)如图,直线分别交和于点、,点在上,,且.求证:.25.(12分)如图,在平面直角坐标系中,是坐标原点,点的坐标为,点的坐标,点是直线上位于第二象限内的一个动点,过点作轴于点,记点关于轴的对称点为点.(1)求直线的解析式;(2)若,求点的坐标.26.已知是等边三角形,点是的中点,点在射线上,点在射线上,,(1)如图1,若点与点重合,求证:.(2)如图2,若点在线段上,点在线段上,求的值.
参考答案一、选择题(每题4分,共48分)1、C【分析】先将因式分解,再将与代入计算即可.【详解】解:,故答案为:C.【点睛】本题考查了代数式求值问题,涉及了利用平方差公式进行因式分解,解题的关键是熟记平方差公式.2、C【分析】根据进行变形即可.【详解】解:即故选:C.【点睛】此题考查了完全平方公式,掌握是解题的关键,是一道基础题,比较简单.3、B【解析】直接利用点的坐标性质得出答案.【详解】点P(-2,1)到x轴的距离是:1.故选B.【点睛】此题主要考查了点的坐标,正确把握点的坐标性质是解题关键.4、D【解析】根据速度=路程÷时间,即可求出两人的速度,利用待定系数法求出一次函数和正比例函数解析式即可判定②③正确,利用方程组求出交点的横坐标即可判断④正确.【详解】解:甲骑车速度为80-501=30km/小时,乙的速度为603=20km/小时,故①设l1的表达式为y=kx+b,把(0,80),(1,50)代入得到:b=80k+b=50解得k=-30b=80∴直线l1的解析式为y=﹣30x+80,故②正确;设直线l2的解析式为y=k′x,把(3,60)代入得到k′=20,∴直线l2的解析式为y=20x,故③正确;由y=﹣30x+80y=20x,解得∴85小时后两人相遇,故④正确正确的个数是4个.故选:D.【点睛】本题考查一次函数的应用,速度、时间、路程之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5、B【分析】分别根据算术平方根的定义,积的乘方运算法则,同底数幂的除法法则以及完全平方公式逐一判断即可.【详解】A.,故本选项不合题意;B.(ab2)3=a3b6,正确;C.a6÷a2=a4,故本选项不合题意;D.(a﹣b)2=a2﹣2ab+b2,故本选项不合题意.故选:B.【点睛】本题主要考查了算术平方根,幂的乘方与积的乘方,同底数幂的除法以及完全平方公式,熟记相关运算法则是解答本题的关键.6、C【解析】设圆圆答对了x道题,答错了y道题,根据“每答对一道题得+5分,每答错一道题得-2分,不答的题得0分,已知圆圆这次竞赛得了1分”列出方程.【详解】设圆圆答对了x道题,答错了y道题,依题意得:5x-2y+(20-x-y)×0=1.故选C.【点睛】此题考查了由实际问题抽象出二元一次方程.关键是读懂题意,根据题目中的数量关系,列出方程.7、C【分析】根据等腰三角形的性质以及三角形全等的判定定理,逐一判断选项,即可.【详解】∵在△ABC中,AB=AC,AE是∠BAC的平分线,∴AE⊥BC,故选项A正确;∴BE=CE,故选项B正确;在△ABD和△ACD中,∵,∴△ABD≌△ACD(SAS),故选项D正确;∵D为线段AE上一点,BD不一定是∠ABC的平分线,∴∠ABD与∠DBE不一定相等,故选项C错误;故选:C.【点睛】本题主要考查等腰三角形的性质以及三角形全等的判定定理,掌握等腰三角形三线合一,是解题的关键.8、D【分析】根据最简二次根式的概念对每个选项进行判断即可.【详解】A、,不是最简二次根式,此选项不正确;B、,不是最简二次根式,此选项不正确;C、,不是最简二次根式,此选项不正确;D、,不能再进行化简,是最简二次根式,此选项正确;故选:D.【点睛】本题考查了最简二次根式,熟练掌握概念是解题的关键.9、B【分析】利用平行线的性质依次分析即可得出结果.【详解】解:∵AB∥CD,∴∠BAD+∠D=180°(两直线平行,同旁内角互补),∠BAC=∠DCA(两直线平行,内错角相等),故①、②正确;只有当AD∥BC时,根据两直线平行,同旁内角互补,得出∠BAD+∠B=180°,根据两直线平行,内错角相等,得出∠DAC=∠BCA,故③、④错误,故选:B.【点睛】本题考查平行线的性质,解题的关键是熟练掌握基本性质,属于中考常考题型.10、C【分析】根据已知条件,可知按照点C所在的直线分两种情况:①点C以点A为标准,AB为底边;②点C以点B为标准,AB为等腰三角形的一条边.【详解】解:如图①点C以点A为标准,AB为底边,符合点C的有5个;
②点C以点B为标准,AB为等腰三角形的一条边,符合点C的有4个.
所以符合条件的点C共有9个.
故选:C.【点睛】此题考查了等腰三角形的判定来解决特殊的实际问题,其关键是根据题意,结合图形,再利用数学知识来求解.注意数形结合的解题思想.11、C【分析】根据平行线的性质和判定和三角形的内角对每一个选项进行判断即可.【详解】解:A、如果a∥b,b∥c,那么a∥c,是真命题,不符合题意,本选项错误;B、锐角三角形中最大的角一定大于或等于60°,是真命题,不符合题意,本选项错误;C、两条直线被第三条直线所截,若这两条直线平行,则内错角相等,故是假命题,符合题意,本选项正确;D、三角形三个内角和等于180°,真命题,不符合题意,本选项错误;故选:C.【点睛】本题考查了真假命题的判断,掌握平行线的性质和判定和三角形内角问题是解题关键.12、C【分析】根据有理数与无理数的定义求解即可.【详解】解:﹣1是整数,属于有理数,故选项A不合题意;3.1415是有限小数,属于有理数,故选项B不合题意;π是无限不循环小数,属于无理数,故选项C符合题意;是分数,属于有理数,故选项D不合题意.故选:C.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.二、填空题(每题4分,共24分)13、【分析】设垃圾房的宽为x米,由栅栏的长度结合图形,可求出垃圾房的长为(14-2x)米,再根据矩形的面积公式即可列出关于x的一元二次方程,此题得解.【详解】设垃圾房的宽为x米,则垃圾房的长为(14-2x)米,根据题意得:x(14-2x)=1.故答案为:x(14-2x)=1.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.14、如果两个三角形全等,那么对应的三边相等【分析】将原命题的条件与结论互换即可得到其逆命题.【详解】∵原命题的条件是:三角形的三边分别相等,结论是:该三角形是全等三角形.∴其逆命题是:如果两个三角形全等,那么对应的三边相等.故答案为如果两个三角形全等,那么对应的三边相等.【点睛】本题考查逆命题的概念,以及全等三角形的判定和性质,解题的关键是熟知原命题的题设和结论.15、m≥-8且m≠-6【分析】首先求出关于x的方程的解,然后根据解不小于1列出不等式,即可求出.【详解】解:解关于x的方程得x=m+9因为的方程的解不小于,且x≠3所以m+9≥1且m+9≠3解得m≥-8且m≠-6.故答案为:m≥-8且m≠-6【点睛】此题主要考查了分式方程的解,是一个方程与不等式的综合题目,重点注意分式方程存在的意义分母不为零.16、a=1【解析】本题是平方差公式的应用,设这个正方形的边长为a,根据正方形面积公式有(a+2)2-a2=24,先用平方差公式化简,再求解.【详解】解:设这个正方形的边长为a,依题意有
(a+2)2-a2=24,
(a+2)2-a2=(a+2+a)(a+2-a)=4a+4=24,
解得a=1.【点睛】本题考查了平方差公式,掌握正方形面积公式并熟记公式结构是解题的关键.17、【分析】根据题意先求出a和b的值,并代入不等式进而解出不等式即可.【详解】解:,解得,∵不等式组的解集为,∴,解得,将代入不等式即有,解得.故答案为:.【点睛】本题考查解一元一次不等式组以及解一元一次不等式,熟练掌握相关求解方法是解题的关键.18、x≥0且x≠1【分析】根据二次根式被开方数大于等于0,分式分母不等于0列式计算即可得解.【详解】解:由题意得,x≥0且x−1≠0,解得x≥0且x≠1.故答案为:x≥0且x≠1.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.三、解答题(共78分)19、﹣2≤x<1,见解析【分析】先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【详解】解不等式①得:x≥﹣2,解不等式②得:x<1,∴不等式组的解集是﹣2≤x<1,在数轴上表示为:.【点睛】本题考查了解一元一次不等式(组)和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.20、(1)=;⊥;(2)+=;(3)2【分析】(1)根据同角的余角相等得出∠BAD=∠CAE,可证△ADB≌△AEC,由全等三角形的性质即可得出结果;(2)连结CE,同(1)的方法证得△ADB≌△AEC,根据全等三角形的性质转换角度,可得△DCE为直角三角形,即可得,,之间满足的等量关系;(3)在AD上方作EA⊥AD,连结DE,同(2)的方法证得△DCE为直角三角形,由已知和勾股定理求得DE的长,再根据等腰直角三角形的性质和勾股定理即可求得AD的长.【详解】解:=,⊥,理由如下:∵,,∴∠ABC=∠ACB=45°,∵,∴,∴,即,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE,∠ABD=∠ACE=45°,∴∠ACB+∠ACE=90°,即⊥,故答案为:=;⊥.(2)+=,证明如下:如图,连结CE,∵与均为等腰直角三角形,∴∠ABC=∠ACB=45°,,即,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE,∠ABD=∠ACE=45°,∴∠ACB+∠ACE=90°,即⊥,则△DCE为直角三角形,∴+=,∴+=;(3)如图,作EA⊥AD,使得AE=AD,连结DE、CE,∵,∴,AB=AC,∵,AE=AD,∴,,∴,即,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE,∵,则△DCE为直角三角形,∵,,∴,则,在Rt△ADE中,AD=AE,∴,则.【点睛】本题是四边形综合题,主要考查了全等三角形的判定与性质、勾股定理、等腰直角三角形的性质,解题的关键是合理得添加辅助线找出两个三角形全等.21、(1)①45;②当∠AHE为锐角时,∠AHE=11.5°时,a的最小值是2;当∠AHE为钝角时,∠AHE=111.5°时,a的最小值是;(1).【详解】(1)①∵四边形ABCD是矩形,∴∠ADH=90°.∵DH=DA,∴∠DAH=∠DHA=45°.∴∠HAE=45°.∵HA=HG,∴∠HAE=∠HGA=45°②分两种情况讨论:第一种情况:如答图1,∠AHE为锐角时,∵∠HAG=∠HGA=45°,∴∠AHG=90°.由折叠可知:∠HAE=∠F=45°,∠AHE=∠FHE,∵EF∥HG,∴∠FHG=∠F=45°.∴∠AHF=∠AHG∠FHG=45°,即∠AHE+∠FHE=45°.∴∠AHE=11.5°.此时,当B与G重合时,a的值最小,最小值是1.第二种情况:如答图1,∠AHE为钝角时,∵EF∥HG,∴∠HGA=∠FEA=45°,即∠AEH+∠FEH=45°.由折叠可知:∠AEH=∠FEH,∴∠AEH=∠FEH=11.5°.∵EF∥HG,∴∠GHE=∠FEH=11.5°.∴∠AHE=90°+11.5°=111.5°.此时,当B与E重合时,a的值最小,设DH=DA=x,则AH=CH=x,在Rt△AHG中,∠AHG=90°,由勾股定理得:AG=AH=1x,∵∠AEH=∠FEH,∠GHE=∠FEH,∴∠AEH=∠GHE.∴GH=GE=x.∴AB=AE=1x+x.∴a的最小值是.综上所述,当∠AHE为锐角时,∠AHE=11.5°时,a的最小值是1;当∠AHE为钝角时,∠AHE=111.5°时,a的最小值是.(1)如答图3:过点H作HQ⊥AB于Q,则∠AQH=∠GQH=90°,在矩形ABCD中,∠D=∠DAQ=90°,∴∠D=∠DAQ=∠AQH=90°.∴四边形DAQH为矩形.∴AD=HQ.设AD=x,GB=y,则HQ=x,EG=1y,由折叠可知:∠AEH=∠FEH=60°,∴∠FEG=60°.在Rt△EFG中,EG=EF×cos60°=1y,在Rt△HQE中,,∴.∵HA=HG,HQ⊥AB,∴AQ=GQ=.∴AE=AQ+QE=.由折叠可知:AE=EF,即,即.∴AB=1AQ+GB=.∴.22、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.【分析】(1)乙种图书售价每本元,则甲种图书售价为每本元,根据“用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本”列出方程求解即可;(2)设甲种图书进货本,总利润元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大的方案.【详解】(1)设乙种图书售价每本元,则甲种图书售价为每本元.由题意得:,解得:.经检验,是原方程的解.所以,甲种图书售价为每本元,答:甲种图书售价每本28元,乙种图书售价每本20元.(2)设甲种图书进货本,总利润元,则.又∵,解得:.∵随的增大而增大,∴当最大时最大,∴当本时最大,此时,乙种图书进货本数为(本).答:甲种图书进货533本,乙种图书进货667本时利润最大.【点睛】本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.23、(1)45度;(1)∠AEC﹣∠AED=45°,理由见解析;(3)见解析【分析】(1)由等腰三角形的性质可求∠BAE=140°,可得∠CAE=50°,由等腰三角形的性质可得∠AEC=∠ACE=65°,即可求解;(1)由等腰三角形的性质可求∠BAE=180°﹣1α,可得∠CAE=90°﹣1α,由等腰三角形的性质可得∠AEC=∠ACE=45°+α,可得结论;(3)如图,过点C作CG⊥AH于G,由等腰直角三角形的性质可得EH=EF,CH=CG,由“AAS”可证△AFB≌△CGA,可得AF=CG,由勾股定理可得结论.【详解】解:(1)∵AB=AC,AE=AB,∴AB=AC=AE,∴∠ABE=∠AEB,∠ACE=∠AEC,∵∠AED=10°,∴∠ABE=∠AED=10°,∴∠BAE=140°,且∠BAC=90°∴∠CAE=50°,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=∠ACE=65°,∴∠DEC=∠AEC﹣∠AED=45°,故答案为:45;(1)猜想:∠AEC﹣∠AED=45°,理由如下:∵∠AED=∠ABE=α,∴∠BAE=180°﹣1α,∴∠CAE=∠BAE﹣∠BAC=90°﹣1α,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,∴∠AEC﹣∠AED=45°;(3)如图,过点C作CG⊥AH于G,∵∠AEC﹣∠AED=45°,∴∠FEH=45°,∵AH⊥BE,∴∠FHE=∠FEH=45°,∴EF=FH,且∠EFH=90°,∴EH=EF,∵∠FHE=45°,CG⊥FH,∴∠GCH=∠FHE=45°,∴GC=GH,∴CH=CG,∵∠BAC=∠CGA=90°,∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,∴△AFB≌△CGA(AAS)∴AF=CG,∴CH=AF,∵在Rt△AEF中,AE1=AF1+EF1,∴(AF)1+(EF)1=1AE1,∴EH1+CH1=1AE1.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.24、见解析【分析】先根据证明EP∥FQ,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2(2024版)影视制作与版权许可合同
- 2024年土地使用权转让合同(全新修订)
- 2024小额借款合同书范文
- 2024车辆承包经营合同
- 2024年工程项目合作与购销合同
- 2024房屋翻修合同
- 2024广告喷绘合同范本
- 2024专利转让合同纠纷的处理方法
- 2024年企业IT架构优化顾问合同
- 2024年市场调研合同标的及调研内容和方式
- 新人教版八年级物理上册期中考试及答案【可打印】
- 绿色钢铁产业链构建
- 2024年企业股东退股补偿协议版
- 河南省商丘市2023-2024学年高一上学期期中考试化学试题(含答案)
- V带传动设计说明书
- 墓地长期租用合同模板
- 2024年心理咨询师基础知识考试题库(浓缩500题)
- 物 理第四章 第1节光沿直线传播课件-2024-2025学年八年级物理(人教版2024)
- 2024年银行考试-反洗钱考试近5年真题集锦(频考类试题)带答案
- 2025年九省联考新高考 数学试卷(含答案解析)
- 职校开学第一课课件:谁说职业没前途
评论
0/150
提交评论