版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省乐山四中学2025届八年级数学第一学期期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,AD∥BC,∠ABC的平分线BP与∠BAD的平分线AP相交于点P,作PE⊥AB于点E,若PE=3,则点P到AD与BC的距离之和为().A.3 B.4 C.5 D.62.某地区连续10天的最高气温统计如下表,则该地区这10天最高气温的众数是()最高气温(°C)1819202122天数12232A.20 B.20.5 C.21 D.223.已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C4.如图所示,在直角三角形ACB中,已知∠ACB=90°,点E是AB的中点,且,DE交AC的延长线于点D、交BC于点F,若∠D=30°,EF=2,则DF的长是()A.5 B.4 C.3 D.25.如图汽车标志中不是中心对称图形的是()A. B. C. D.6.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10° B.20° C.50° D.70°7.下列计算正确的是().A. B. C. D.8.如图,在△ABC中,AB=AC,以B为圆心,BC长为半径画弧,交AC于点D,则下列结论一定正确的是()A.AD=DC B.AD=BD C.∠DBC=∠A D.∠DBC=∠ABD9.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=1.则图中阴影部分的面积为()A.10 B.12 C.16 D.1110.下列各式能用平方差公式计算的是()A. B.C. D.11.下列实数是无理数的是A. B. C. D.012.下列四个图形中,不是轴对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2,B3…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记a1,第2个等边三角形的边长记为a2,以此类推,若OA1=3,则a2=_______,a2019=_______.14.如图,AD=13,BD=12,∠C=90°,AC=3,BC=4.则阴影部分的面积=________.15.因式分解:2a2﹣8=.16.分解因式:3m2﹣6mn+3n2=_____.17.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=22°,∠2=34°,则∠3=___.18.如图,AB=AD,要证明△ABC与△ADC全等,只需增加的一个条件是______________
三、解答题(共78分)19.(8分)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x;y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?20.(8分)我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式.例如由图1可以得到.请回答下列问题:(1)写出图2中所表示的数学等式是;(2)如图3,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有,的式子表示);(3)通过上述的等量关系,我们可知:当两个正数的和一定时,它们的差的绝对值越小,则积越(填“大”“或“小”);当两个正数的积一定时,它们的差的绝对值越小,则和越(填“大”或“小”).21.(8分)已知,直线AB∥CD.(1)如图1,若点E是AB、CD之间的一点,连接BE.DE得到∠BED.求证:∠BED=∠B+∠D.(1)若直线MN分别与AB、CD交于点E.F.①如图1,∠BEF和∠EFD的平分线交于点G.猜想∠G的度数,并证明你的猜想;②如图3,EG1和EG1为∠BEF内满足∠1=∠1的两条线,分别与∠EFD的平分线交于点G1和G1.求证:∠FG1E+∠G1=180°.22.(10分)解下列方程并检验(1)(2)23.(10分)为响应国家的号召,减少污染,某厂家生产出一种节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶.这种油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,费用为118元;若完全用电做动力行驶,费用为36元,已知汽车行驶中每千米用油的费用比用电的费用多1.6元.(1)求汽车行驶中每千米用电的费用和甲、乙两地之间的距离.(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过61元,则至少需要用电行驶多少千米?24.(10分)某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲、乙两队合作完成该工程需要多少天?25.(12分)如图,在△ABC中,∠BAC=50°,∠C=60°,AD⊥BC,(1)用尺规作图作∠ABC的平分线BE,且交AC于点E,交AD于点F(不写作法,保留作图痕迹);(2)求∠BFD的度数.26.已知:如图,∠1=∠2,∠3=∠4求证:AC=AB.
参考答案一、选择题(每题4分,共48分)1、D【解析】过点P作PF⊥AD于F,作PG⊥BC于G,根据角平分线上的点到角的两边距离相等可得PF=PE,PG=PE,再根据平行线之间的距离的定义判断出EG的长即为AD、BC间的距离.【详解】过P作PM⊥AD,PN⊥BC,由题意知AP平分∠BAD,∴PM=PE=3,同理PN=PE=3,∴PM+PN=6.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,平行线间的距离的定义,熟记性质并作辅助线构造出AD、BC间的距离的线段是解题的关键.2、C【分析】根据众数的定义求解即可.【详解】∵21出现的次数最多,∴则该地区这10天最高气温的众数是21;故答案选C.【点睛】此题考查了众数,解题的关键是正确理解题意,抓住题目中的关键语句.3、B【解析】利用判断三角形全等的方法判断即可得出结论.【详解】A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,故选B.【点睛】本题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.4、B【分析】求出∠B=30°,结合EF=2,得到BF,连接AF,根据垂直平分线的性质得到FA=FB=4,再证明∠DAF=∠D,得到DF=AF=4即可.【详解】解:∵DE⊥AB,则在△AED中,∵∠D=30°,∴∠DAE=60°,在Rt△ABC中,∵∠ACB=90°,∠BAC=60°,∴∠B=30°,在Rt△BEF中,∵∠B=30°,EF=2,∴BF=4,连接AF,∵DE是AB的垂直平分线,∴FA=FB=4,∠FAB=∠B=30°,∵∠BAC=60°,∴∠DAF=30°,∵∠D=30°,∴∠DAF=∠D,∴DF=AF=4,故选B.【点睛】本题考查了垂直平分线的判定和性质,直角三角形的性质,解题的关键是掌握相应定理,构造线段AF.5、B【分析】中心对称图形,是把一个图形绕一个点旋转180°后能和原来的图形重合.【详解】A、C、D中的汽车标志都满足中心对称图形的定义,都属于中心对称图形,而选项B中的汽车标志绕其圆心旋转180°后,不能和原来的图形重合,所以不是中心对称图形.故选B.【点睛】考核知识点:中心对称图形的识别.6、B【分析】要使木条a与b平行,那么∠1=∠2,从而可求出木条a至少旋转的度数.【详解】解:∵要使木条a与b平行,∴∠1=∠2,∴当∠1需变为50º,∴木条a至少旋转:70º-50º=20º.故选B.【点睛】本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.7、A【解析】请在此填写本题解析!A.∵,故正确;B.∵,故不正确;C.∵a3与a2不是同类项,不能合并,故不正确;D.∵,故不正确;故选A.8、C【分析】根据等腰三角形的性质可得,再结合三角形的内角和定理可得.【详解】∵以B为圆心,BC长为半径画弧故选:C.【点睛】本题考查了等腰三角形的性质(等边对等角)、三角形的内角和定理,熟记等腰三角形的相关性质是解题关键.9、C【分析】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP=S矩形MPFD,即可得S△PEB=S△PFD,从而得到阴影的面积.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP=S矩形MPFD,又∵S△PBE=S矩形EBNP,S△PFD=S矩形MPFD,∴S△DFP=S△PBE=×2×1=1,∴S阴=1+1=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.10、C【分析】根据平方差公式的特点:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数,对各选项分析判断后利用排除法求解.【详解】A.相同字母的系数不同,不能用平方差公式计算;B.含y的项系数符号相反,但绝对值不同,不能用平方差公式计算;C.含y的项符号相同,含x的项符号相反,能用平方差公式计算;D.含x、y的项符号都相反,不能用平方差公式计算.故选:C.【点睛】本题考查了平方差公式,注意两个二项式中有一项完全相同,另一项互为相反数,并且相同的项和互为相反数的项必须同时具有,熟记公式结构是解答本题的关键.11、C【解析】根据无理数的概念判断.【详解】解:以上各数只有是无理数,故选C.【点睛】本题考查的是无理数的概念,掌握算术平方根的计算方法是解题的关键.12、D【解析】根据轴对称图形的定义进行判断即可.【详解】A、B、C选项的图形都是轴对称图形;D选项的图形不是轴对称图形.故选:D.【点睛】本题考查轴对称图形的定义,一个图形沿着某条直线折叠后直线两旁的部分能够完全重合,这个图形就叫轴对称图形,这条直线叫对称轴.二、填空题(每题4分,共24分)13、6;3×1.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1=6,得出a3=4a1,a4=8a1,a5=16a1…进而得出答案.【详解】解:如图,
∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=3,
∴A2B1=3,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴a2=2a1=6,
a3=4a1,
a4=8a1,
a5=16a1,
以此类推:a2019=1a1=3×1
故答案是:6;3×1.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a2=2a1=6,a3=4a1,a4=8a1,a5=16a1…进而发现规律是解题关键.14、1【解析】先利用勾股定理求出AB,然后利用勾股定理的逆定理判断出△ABD是直角三角形,然后分别求出两个三角形的面积,相减即可求出阴影部分的面积.解:在Rt△ABC中,AB==5,
∵AD=13,BD=12,
∴AB2+BD2=AD2,即可判断△ABD为直角三角形,
阴影部分的面积=AB×BD-BC×AC=30-6=1.
答:阴影部分的面积=1.
故答案为1.“点睛”此题考查了勾股定理、勾股定理的逆定理,属于基础题,解答本题的关键是判断出三角形ABD为直角三角形.15、2(a+2)(a-2).【详解】2a2-8=2(a2-4)=2(a+2)(a-2).故答案为2(a+2)(a-2)【点睛】考点:因式分解.16、3(m-n)2【解析】原式==故填:17、56°.【解析】先求出∠BAD=∠EAC,证△BAD≌△CAE,推出∠2=∠ABD=22°,根据三角形的外角性质求出即可.【详解】∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=34°,∵∠1=22°,∴∠3=∠1+∠ABD=34°+22°=56°,故答案为56°.【点睛】本题主要考查全等三角形的性质和判定,三角形的外角性质的应用.解此题的关键是推出△BAD≌△CAE.18、DC=BC(答案不唯一)【分析】要说明△ABC≌△ADC,现有AB=AD,公共边AC=AC,需第三边对应相等,于是答案可得.【详解】解:∵AB=AD,AC=AC
∴要使△ABC≌△ADC可利用SSS判定,
故添加DC=BC(答案不唯一).
故答案为:BC=DC,(答案不唯一).【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.三、解答题(共78分)19、(1)乙队单独做需要1天完成任务(2)甲队实际做了3天,乙队实际做了4天【分析】(1)根据题意,由“甲工作20天完成的工作量+乙工作50天完成的工作量=1”列方程求解即可.(2)根据“甲完成的工作量+乙完成的工作量=1”得x与y的关系式;根据x、y的取值范围得不等式,求整数解.【详解】解:(1)设乙队单独做需要x天完成任务,根据题意得,解得x=1.经检验x=1是原方程的解.答:乙队单独做需要1天完成任务.(2)根据题意得,整理得.∵y<70,∴<70,解得x>2.又∵x<15且为整数,∴x=13或3.当x=13时,y不是整数,所以x=13不符合题意,舍去;当x=3时,y=1-35=4.答:甲队实际做了3天,乙队实际做了4天.20、(1);(2);(3)大小【分析】(1)图2面积有两种求法,可以由长为2a+b,宽为a+2b的矩形面积求出,也可以由两个边长为a与边长为b的两正方形,及4个长为a,宽为b的矩形面积之和求出,表示即可;(2)阴影部分的面积可以由边长为x+y的大正方形的面积减去边长为x-y的小正方形面积求出,也可以由4个长为x,宽为y的矩形面积之和求出,表示出即可;(3)两正数和一定,则和的平方一定,根据等式,得到被减数一定,差的绝对值越小,即为减数越小,得到差越大,即积越大;当两正数积一定时,即差一定,差的绝对值越小,得到减数越小,可得出被减数越小;【详解】(1)看图可知,(2)(3)当两个正数的和一定时,它们的差的绝对值越小则积越大;当两个正数的积一定时,它们的差的绝对值越小则和越小.【点睛】本题考点:整式的混合运算,此题考查了整式的混合运算的应用,弄清题意是解本题的关键.21、(1)证明见解析;(1)①∠EGF=90°,证明见解析;②证明见解析.【分析】(1)过点E作EF∥AB,则有∠BEF=∠B根据平行线的性质即可得到结论;
(1)①由(1)中的结论得∠EGF=∠BEG+∠GFD,根据EG、FG分别平分∠BEF和∠EFD,得到∠BEF=1∠BEG,∠EFD=1∠GFD,由于BE∥CF到∠BEF+∠EFD=180°,于是得到1∠BEG+1∠GFD=180°,即可得到结论;
②过点G1作G1H∥AB,由结论可得∠G1=∠1+∠3,由平行线的性质得到∠3=∠G1FD,由于FG1平分∠EFD,求得∠EFG1=∠G1FD=∠3,由于∠1=∠1,于是得到∠G1=∠1+∠EFG1,由三角形外角的性质得到∠EG1G1=∠1+∠EFG1=∠G1,然后根据平角的性质即可得到结论.【详解】(1)证明:如图1过点E作EF∥AB,则有∠BEF=∠B.∵AB∥CD,∴EF∥CD.∴∠FED=∠D.∴∠BEF+∠FED=∠B+∠D.即∠BED=∠B+∠D;(1)①如图1所示,猜想:∠EGF=90°.证明:由(1)中的结论得∠EGF=∠BEG+∠GFD,∵EG.FG分别平分∠BEF和∠EFD,∴∠BEF=1∠BEG,∠EFD=1∠GFD,∵BE∥CF,∴∠BEF+∠EFD=180°,∴1∠BEG+1∠GFD=180°,∴∠BEG+∠GFD=90°,∵∠EGF=∠BEG+∠GFD,∴∠EGF=90°;②证明:如图3,过点G1作G1H∥AB∵AB∥CD∴G1H∥CD∴∠3=∠G1FD由(1)结论可得∠G1=∠1+∠3∵FG1平分∠EFD∴∠EFG1=∠G1FD=∠3∵∠1=∠1∴∠G1=∠1+∠EFG1∵∠EG1G1=∠1+∠EFG1∴∠G1=∠EG1G1∵∠FG1E+∠EG1G1=180°∴∠FG1E+∠G1=180°.【点睛】本题考查平行线的性质,角平分线的性质,三角形外角的性质,熟练掌握平行线的性质定理是解题的关键.22、(1)x=;(2)x=【分析】(1)两边都乘以2(x+3),把分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)两边都乘以2(x-1),把分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:(1)两边都乘以2(x+3),去分母得:4x+2x+6=7,移项合并得:6x=1,解得:x=,检验:当x=时,x+3≠0,∴x=是分式方程的解;(2)两边都乘以2(x-1),去分母得:3-2=6x-6,解得:x=,检验:当x=时,x-1≠0,∴x=是分式方程的解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.23、(1)汽车行驶中每千米用电的费用是元,甲、乙两地之间的距离是121千米;(2)至少需要用电行驶81千米.【分析】(1)设汽车行驶中每千米用电的费用是元,则每千米用油的费用为元,根据题意,列出分式方程,并解方程即可;(2)先求出汽车行驶中每千米用油的费用,设汽车用电行驶,然后根据题意,列出一元一次不等式,即可求出结论.【详解】解:(1)设汽车行驶中每千米用电的费用是元,则每
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024个人房产抵押合同
- 2024年基因治疗技术开发合同
- 2024年度智能医疗系统开发合同
- 2024年度建筑施工安全环保技术创新与应用合同
- 2024年废料交易合同标准版
- 2024年建筑基坑钻探检测合同
- 2024年度F公司太阳能发电设备安装合同
- 2024年度云计算服务提供与运维支持合同
- 2024年工程建筑设计咨询协议
- 2024年度SET技术助力智慧医疗信息安全合同
- 第四讲夏商周考古
- 微机原理与接口技术8259A练习题及答案
- 正方体的11种展开图
- 第15章《分式》教材分析课件(32张)
- 商铺装修工程施工方案.
- 西门子RWD68说明书
- 形式发票样本(Proforma Invoice)
- 医院车辆加油卡管理制度
- 数独题目高级50题(后附答案)【最新】
- 问题线索办理呈批表
- 学、练、评一体化课堂模式下赛的两个问题与对策
评论
0/150
提交评论