版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省株洲市炎陵县八年级数学第一学期期末学业质量监测试题监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若m=275,n=345,则m、n的大小关系正确的是()A.m>n B.m<n C.相等 D.大小关系无法确定2.一个多边形的内角和是外角和的2倍,则它是()A.六边形 B.七边形 C.八边形 D.九边形3.下列四个图形中轴对称图形的个数是()A.1 B.2 C.3 D.44.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点G作EF∥BC交AB于E,交AC于F,过点G作GD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BGC=90°+∠A;③点G到△ABC各边的距离相等;④设GD=m,AE+AF=n,则S△AEF=mn.其中正确的结论有()A.1个 B.2个 C.3个 D.4个5.如图,把矩形沿折叠,使点落在点处,点落在点处,若,且,则线段的长为()A.1 B.2 C.3 D.46.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=42°,则∠P的度数为()A.44° B.66° C.96° D.92°7.在中,的对边分别是,下列条件中,不能说明是直角三角形的是()A. B.C. D.8.下列命题是假命题的是()A.对顶角相等 B.同位角相等 C.同角的余角相等 D.三角形的三个外角和为360°9.若,则下列不等式成立的是()A. B. C. D.10.下列运算正确的是()A.a2+a2=a4 B.(﹣b2)3=﹣b6C.2x•2x2=2x3 D.(m﹣n)2=m2﹣n211.已知数据,,的平均数为,数据,,的平均数为,则数据,,的平均数为().A. B. C. D.12.下列四组数据中,不能作为直角三角形的三边长的是()A.7,24,25 B.6,8,10 C.9,12,15 D.3,4,6二、填空题(每题4分,共24分)13.直角三角形斜边长是5,一直角边的长是3,则此直角三角形的面积为___________.14.如图,AD是等边△ABC的中线,E是AC上一点,且AD=AE,则∠EDC=°15.化简:=_____.16.若关于的方程的解不小于,则的取值范围是___________________.17.如图,平面直角坐标系中有一正方形,点的坐标为点坐标为________.18.如图,,,,在上分别找一点,当的周长最小时,的度数是_______.三、解答题(共78分)19.(8分)如图,是边长为的等边三角形,是边上一动点,由向运动(与、不重合),是延长线上一动点,与点同时以相同的速度由向延长线方向运动(不与重合),过作于,连接交于.(1)若时,求的长;(2)当时,求的长;(3)在运动过程中线段的长是否发生变化?如果不变,求出线段的长;如果发生变化,请说明理由.20.(8分)探索与证明:(1)如图①,直线经过正三角形的顶点,在直线上取点,,使得,.通过观察或测量,猜想线段,与之间满足的数量关系,并予以证明;(2)将(1)中的直线绕着点逆时针方向旋转一个角度到如图②的位置,,.通过观察或测量,猜想线段,与之间满足的数量关系,并予以证明.21.(8分)如图某船在海上航行,在A处观测到灯塔B在北偏东60°方向上,该船以每小时15海里的速度向东航行到达C处,观测到灯塔B在北偏东30°方向上,继续向东航行到D处,观测到灯塔B在北偏西30°方向上,当该船到达D处时恰与灯塔B相距60海里.(1)判断BCD的形状;(2)求该船从A处航行至D处所用的时间.22.(10分)现要在△ABC的边AC上确定一点D,使得点D到AB,BC的距离相等.(1)如图,请你按照要求,在图上确定出点D的位置(尺规作图,不写作法,保留作图痕迹);(2)若AB=4,BC=6,△ABC的面积为12,求点D到AB的距离.23.(10分)如图,在平面直角坐标系中,,,且,满足,直线经过点和.(1)点的坐标为(,),点的坐标为(,);(2)如图1,已知直线经过点和轴上一点,,点在直线AB上且位于轴右侧图象上一点,连接,且.①求点坐标;②将沿直线AM平移得到,平移后的点与点重合,为上的一动点,当的值最小时,请求出最小值及此时N点的坐标;(3)如图2,将点向左平移2个单位到点,直线经过点和,点是点关于轴的对称点,直线经过点和点,动点从原点出发沿着轴正方向运动,连接,过点作直线的垂线交轴于点,在直线上是否存在点,使得是等腰直角三角形?若存在,求出点坐标.24.(10分)(1)(问题情境)小明遇到这样一个问题:如图①,已知是等边三角形,点为边上中点,,交等边三角形外角平分线所在的直线于点,试探究与的数量关系.小明发现:过作,交于,构造全等三角形,经推理论证问题得到解决.请直接写出与的数量关系,并说明理由.(2)(类比探究)如图②,当是线段上(除外)任意一点时(其他条件不变)试猜想与的数量关系并证明你的结论.(3)(拓展应用)当是线段上延长线上,且满足(其他条件不变)时,请判断的形状,并说明理由.25.(12分)如图,隧道的截面由半圆和长方形构成,长方形的长BC为8m,宽AB为1m,该隧道内设双向行驶的车道(共有2条车道),若现有一辆货运卡车高4m,宽2.3m.则这辆货运卡车能否通过该隧道?说明理由.26.周末了,李芳的妈妈从菜市场买回来千克萝卜和千克排骨.请你通过列方程组求出这天萝卜、排骨的售价分别是多少(单位:元千克)?
参考答案一、选择题(每题4分,共48分)1、A【分析】根据幂的乘方法则,将每一个数化为指数相同的数,再比较底数.【详解】解:∵m=275=(25)15=3215,n=345=(33)15=2715,
∴275>345,即m>n.
故选:A.【点睛】本题考查幂的乘方,积的乘方运算法则.理清指数的变化是解题的关键.2、A【分析】先根据多边形的内角和定理及外角和定理,列出方程,再解方程,即可得答案.【详解】解:设多边形是边形.由题意得:解得∴这个多边形是六边形.故选:A.【点睛】本题考查内角和定理及外角和定理的计算,方程思想是解题关键.3、C【解析】根据轴对称图形的概念求解.【详解】第1,2,3个图形为轴对称图形,共3个.故选:C.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4、D【分析】根据BG,CG分别是∠ABC和∠ACB的平分线,EF∥BC,可得EB=EG,FG=FC,从而证得①正确;根据三角形内角和定理即可求出②正确;根据角平分线的性质可知点G是△ABC的内心,从而可得③正确;连接AG,结合点G是内心,即可表示出△AEG和△AFG的面积,从而可知④正确.【详解】∵BG,CG分别是∠ABC和∠ACB的平分线,∴∠EBG=∠GBC,∠FCG=∠GCB∵EF∥BC∴∠EGB=∠GBC,∠FGC=∠GCB∴∠EBG=∠EGB,∠FCG=∠FGC∴EB=EG,FG=FC∴EF=BE+CF故①正确;在△ABC中,∠A=180°-(∠ABC+∠ACB)在△GBC中,,即所以②正确;∵点G是∠ABC和∠ACB的平分线的交点,∴点G是△ABC的内心∴点G到△ABC各边的距离相等故③正确;连接AG,∵点G到△ABC各边的距离相等,GD=m,AE+AF=n,∴故④正确;综上答案选D.【点睛】本题考查的等腰三角形的判定,角平分线的性质,三角形内角和定理和三角形面积的求法,能够综合调动这些知识是解题的关键.5、B【分析】由平行线的性质和对折的性质证明△AEF是等边三角形,在直角三角形ABF中,求得∠BAF=,从而求得AF=1BF=1,进而得到EF=1.【详解】∵矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,∴∠B=90,∠EFC=∠AFE,ADBC,又∵∠AFE=60,∴∠AEF=∠AFE=60,∴△AEF是等边三角形,∴∠EAF=60,EF=AF,又∵ADBC,∴∠AFB=60,又∵∠B=90,BF=1,∴AF=1BF=1,又∵EF=AF,∴EF=1.故选:B.【点睛】考查了图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.6、C【分析】根据等腰三角形的性质得到∠A=∠B,证明△AMK≌△BKN,得到∠AMK=∠BKN,根据三角形的外角的性质求出∠A=∠MKN=42°,根据三角形内角和定理计算即可.【详解】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=42°,∴∠P=180°﹣∠A﹣∠B=96°,故选C.【点睛】此题主要考查利用等腰三角形的性质判定三角形全等,以及三角形的外教性质和内角和定理的运用,熟练掌握,即可解题.7、C【分析】此题考查的是直角三角形的判定方法,大约有以下几种:①勾股定理的逆定理,即三角形三边符合勾股定理;②三个内角中有一个是直角,或两个内角的度数和等于第三个内角的度数;根据上面两种情况进行判断即可.【详解】解:A、由得a2=b2+c2,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;B、由得∠C+∠B=∠A,此时∠A是直角,能够判定△ABC是直角三角形,不符合题意;C、∠A:∠B:∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC不是直角三角形,故此选项符合题意;D、a:b:c=5:12:13,此时c2=b2+a2,符合勾股定理的逆定理,△ABC是直角三角形,不符合题意;故选:C.【点睛】此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三内角中有一个是直角的情况下,才能判定三角形是直角三角形.8、B【分析】由题意根据对顶角的概念、同位角的定义、余角、三角形外角和的概念判断.【详解】解:A、对顶角相等,是真命题;B、两直线平行,同位角相等,则同位角相等是假命题;C、同角的余角相等,是真命题;D、三角形的三个外角和为360°,是真命题.故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉相关的性质定理.9、C【分析】根据不等式的性质依次分析判断即可.【详解】A、,则,所以,故A错误;B、,则,故B错误;C、,,故C正确;D、,则,故D错误;故选C.【点睛】本题主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.10、B【分析】根据合并同类项法则、幂的乘方法则、单项式乘单项式法则和完全平方公式法则解答即可.【详解】A、a2+a2=2a2,故本选项错误;B、(﹣b2)3=﹣b6,故本选项正确;C、2x•2x2=4x3,故本选项错误;D、(m﹣n)2=m2﹣2mn+n2,故本选项错误.故选:B.【点睛】本题考查了整式的运算,合并同类项、幂的乘方、单项式乘单项式和完全平方公式,熟练掌握运算法则是解题的关键.11、A【分析】通过条件列出计算平均数的式子,然后将式子进行变形代入即可.【详解】解:由题意可知,,∴,故选:A.【点睛】本题考查了平均数的计算,熟练掌握平均数的计算方法并将式子进行正确的变形是解题的关键.12、D【分析】根据勾股定理的逆定理:若三边满足,则三角形是直角三角形逐一进行判断即可得出答案.【详解】A,,能组成直角三角形,不符合题意;B,,能组成直角三角形,不符合题意;C,,能组成直角三角形,不符合题意;D,,不能组成直角三角形,符合题意;故选:D.【点睛】本题主要考查勾股定理的逆定理,掌握勾股定理的逆定理是解题的关键.二、填空题(每题4分,共24分)13、1.【解析】试题分析:∵直角三角形斜边长是5,一直角边的长是3,∴另一直角边长为=2.该直角三角形的面积S=×3×2=1.故答案为1.考点:勾股定理.14、15【解析】解:∵AD是等边△ABC的中线,,,,,,15、x【分析】把分子分解因式,然后利用分式的性质化简得出答案.【详解】解:原式==x.故答案为:x.【点睛】本题考查了分式的约分,熟练掌握分式的基本性质是解答本题的关键,本题也考查了因式分解.16、m≤-8【分析】先根据题意求到的解,会是一个关于的代数式,再根据不小于列出不等式,即可求得正确的答案.【详解】解:解得故答案为:.【点睛】本题考查的是方程的相关知识,根据题意列出含有m的不等式是解题的关键.17、【分析】过点作轴于,过点作轴,过点作交CE的延长线于.先证明,得到,,根据点的坐标定义即可求解.【详解】解:如图,过点作轴于,过点作轴,过点作交CE的延长线于.,,.四边形是正方形,.易求.又∴,,,点的坐标为,,点到轴的距离为,点的坐标为.故答案为:【点睛】本题考查了平面直角坐标系点的坐标,全等三角形的判定与性质,根据题意,添加辅助线构造全等三角形是解题关键.18、140°【分析】作点A关于CD、BC的对称点E、F,连接EF交CD、BC于点N、M,连接AN、MN、AM,此时的周长最小,先利用求出∠E+∠F=70,根据轴对称关系及三角形外角的性质即可求出∠AMN+∠ANM=2(∠E+∠F).【详解】如图,作点A关于CD、BC的对称点E、F,连接EF交CD、BC于点N、M,连接AN、MN、AM,此时的周长最小,∵,,∴∠ABC=∠ADC=90,∵,∴∠BAD=110,∴∠E+∠F=70,∵∠AMN=∠F+∠FAM,∠F=∠FAM,∠ANM=∠E+∠EAN,∠E=∠EAN,∴∠AMN+∠ANM=2(∠E+∠F)=140,故答案为:140.【点睛】此题考查最短路径问题,轴对称的性质,三角形外角性质,四边形的内角和,正确理解将三角形的最短周长转化为最短路径问题来解决是解题的关键.三、解答题(共78分)19、(1)2(2)2(3)DE=3为定值,理由见解析【分析】(1)根据等边三角形的性质得到∠A=60,根据三角形内角和定理得到∠APE=30,根据直角三角形的性质计算;(2)过P作PF∥QC,证明△DBQ≌△DFP,根据全等三角形的性质计算即可;(3)根据等边三角形的性质、直角三角形的性质解答.【详解】(1)∵△ABC是等边三角形,∴∠A=60,∵PE⊥AB,∴∠APE=30,∵AE=1,∠APE=30,PE⊥AB,∴AP=2AE=2;(2)解:过P作PF∥QC,则△AFP是等边三角形,∵P、Q同时出发,速度相同,即BQ=AP,∴BQ=PF,在△DBQ和△DFP中,,∴△DBQ≌△DFP,∴BD=DF,∵∠BQD=∠BDQ=∠FDP=∠FPD=30,∴BD=DF=FA=AB=2,∴AP=2;(3)解:由(2)知BD=DF,∵△AFP是等边三角形,PE⊥AB,∴AE=EF,∴DE=DF+EF=BF+FA=AB=3为定值,即DE的长不变.【点睛】本题考查的是全等三角形的判定和性质、等边三角形的判定和性质以及平行线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.20、(1)DE=BD+CE,证明见解析;(2)CE=BD+DE,证明见解析【分析】(1)根据等边三角形的性质可得AB=CA,∠BAC=60°,然后根据已知条件可得,并且可证出∠ABD=∠CAE,利用AAS即可证出△ABD≌△CAE,从而得出BD=AE,AD=CE,然后根据DE=AE+AD和等量代换即可得出结论;(2)根据等边三角形的性质可得AB=CA,∠BAC=60°,然后根据已知条件可得,并且可证出∠ABD=∠CAE,利用AAS即可证出△ABD≌△CAE,从而得出BD=AE,AD=CE,然后根据AD=AE+DE和等量代换即可得出结论;【详解】解:(1)DE=BD+CE,证明如下∵△ABC为等边三角形∴AB=CA,∠BAC=60°∵,∴∴∠ABD+∠BAD=180°-∠ADB=120°∠CAE+∠BAD=180°-∠BAC=120°∴∠ABD=∠CAE在△ABD和△CAE中∴△ABD≌△CAE∴BD=AE,AD=CE∴DE=AE+AD=BD+CE;(2)CE=BD+DE,证明如下∵△ABC为等边三角形∴AB=CA,∠BAC=60°∵,∴∴∠ABD+∠BAD=180°-∠ADB=60°∠CAE+∠BAD=∠BAC=60°∴∠ABD=∠CAE在△ABD和△CAE中∴△ABD≌△CAE∴BD=AE,AD=CE∵AD=AE+DE∴CE=BD+DE.【点睛】此题考查的是等边三角形的性质和全等三角形的判定及性质,掌握等边三角形的性质、利用AAS判定两个三角形全等和全等三角形的对应边相等是解决此题的关键.21、(1)等边三角形;(2)8小时【分析】(1)根据题意可得∠BCD=∠BDC=60°,即可知△BCD是等边三角形;
(2)由(1)可求得BC,CD的长,然后易证得△ABC是等腰三角形,继而求得AD的长,则可求得该船从A处航行至D处所用的时间;【详解】解:(1)根据题意得:∠BCD=90°-30°=60°,∠BDC=90°-30°=60°,
∴∠BCD=∠BDC=60°,
∴BC=BD,
∴△BCD是等边三角形;
(2)∵△BCD是等边三角形,
∴CD=BD=BC=60海里,
∵∠BAC=90°-60°=30°,
∴∠ABC=∠BCD-∠BAC=30°,
∴∠BAC=∠ABC,
∴AC=BC=60海里,
∴AD=AC+CD=120海里,
∴该船从A处航行至D处所用的时间为:120÷15=8(小时);【点睛】此题考查了方向角问题.注意准确构造直角三角形是解此题的关键.22、(1)见解析;(2)【解析】试题分析:本题需先根据已知条件,再结合画图的步骤即可画出图形.过点作交于点,作交于点根据角平分线的性质得到根据即可求得点到的距离.试题解析:(1)作∠ABC的平分线,交AC于点D,点D就是所求作的AC边上到距离相等的点.(2)如图,过点作交于点,作交于点平分即解得:点到的距离为点睛:角平分线的性质:角平分线上的点到角两边的距离相等.23、(1)-1,0;0,-3;(2)①点;②点,最小值为;(3)点的坐标为或或.【分析】(1)根据两个非负数和为0的性质即可求得点A、B的坐标;(2)①先求得直线AB的解析式,根据求得,继而求得点的横坐标,从而求得答案;②先求得直线AM的解析式及点的坐标,过点过轴的平行线交直线与点,过点作垂直于的延长线于点,求得,即为最小值,即点为所求,求得点的坐标,再求得的长即可;(3)先求得直线BD的解析式,设点,同理求得直线的解析式,求出点的坐标为,证得,分∠QGE为直角、∠EQG为直角、∠QEG为直角,三种情况分别求解即可.【详解】(1)∵,∴,,则,故点A、B的坐标分别为:,故答案为:;;(2)①直线经过点和轴上一点,,∴,由(1)得:点A、B的坐标分别为:,则,,设直线AB的解析式为:,∴解得:∴直线AB的解析式为:,∵∴作⊥轴于,∴,∴,∴点的横坐标为,又点在直线AB上,∴,∴点的坐标为;②由(1)得:点A、B的坐标分别为:,则,,∴,,∴点的坐标为,设直线AM的解析式为:,∴解得:∴直线AM的解析式为:,根据题意,平移后点,过点过轴的平行线交直线与点,过点作垂直于的延长线于点,如图1,∴∥,∵,∴,则,为最小值,即点为所求,则点N的横坐标与点的横坐标相同都是,点N在直线AM上,∴,∴点的坐标为,∴,;(3)根据题意得:点的坐标分别为:,设直线的解析式为:,∴,解得:,∴直线BD的解析式为:,设点,同理直线的解析式为:,∵,∴设直线的解析式为:,当时,,则,则直线的解析式为:,故点的坐标为,即,①当为直角时,如下图,∵为等腰直角三角形,∴,则点的坐标为,将点的坐标代入直线的解析式并解得:,故点;②当为直角时,如下图,作于,∵为等腰直角三角形,∴,,∴∥轴,、和都是底边相等的等腰直角三角形,∴,∴,则点的坐标为,将点的坐标代入直线的解析式并解得:,故点;③当为直角时,如下图,同理可得点的坐标为,将点的坐标代入直线的解析式并解得:,故点;综上,点的坐标为:或或.【点睛】本题考查的是一次函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉首大学《教育学基础》2021-2022学年第一学期期末试卷
- 吉首大学《大数据框架技术》2021-2022学年期末试卷
- 吉林艺术学院《音乐鉴赏》2021-2022学年第一学期期末试卷
- 吉林艺术学院《色彩构成》2021-2022学年第一学期期末试卷
- 吉林艺术学院《合唱团Ⅴ》2021-2022学年第一学期期末试卷
- 民宿租房承包协议书范文范本
- 2024年大宗贸易柴油合同范本
- 吉林师范大学《新闻评论写作》2021-2022学年第一学期期末试卷
- 发放贷款代偿协议书范文范本
- 2024年部编版高考语文一轮复习必背重点:古代文化常识
- 关于激发兴趣转化初中物理学困生的个案研究的开题报告
- 博弈论中机制设计
- 铁路专用线设计规范(试行)(TB 10638-2019)
- SH200型呼吸机操作(1)教学课件
- 老年延续护理
- 2024年水泥行业风险分析报告
- 保持内心的冷静与淡定
- 第九届全国大学生物流仿真设计大赛赛题高职
- 知识产权保护宣传讲解培训
- 吉林大学2022年648无机化学与物理化学物理化学部分考研真题(含答案)
- 《雾化器的使用方法》课件
评论
0/150
提交评论