2025届苏州市数学八上期末监测模拟试题含解析_第1页
2025届苏州市数学八上期末监测模拟试题含解析_第2页
2025届苏州市数学八上期末监测模拟试题含解析_第3页
2025届苏州市数学八上期末监测模拟试题含解析_第4页
2025届苏州市数学八上期末监测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届苏州市数学八上期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.程老师制作了如图1所示的学具,用来探究“边边角条件是否可确定三角形的形状”问题,操作学具时,点Q在轨道槽AM上运动,点P既能在以A为圆心、以8为半径的半圆轨道槽上运动,也能在轨道槽QN上运动,图2是操作学具时,所对应某个位置的图形的示意图.有以下结论:①当∠PAQ=30°,PQ=6时,可得到形状唯一确定的△PAQ②当∠PAQ=30°,PQ=9时,可得到形状唯一确定的△PAQ③当∠PAQ=90°,PQ=10时,可得到形状唯一确定的△PAQ④当∠PAQ=150°,PQ=12时,可得到形状唯一确定的△PAQ其中所有正确结论的序号是()A.②③ B.③④ C.②③④ D.①②③④2.如图①是一直角三角形纸片,∠A=30°,BC=4cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,再将图②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,则折痕DE的长为()A.cm B.cm C.cm D.3cm3.已知,,是直线(为常数)上的三个点,则,,的大小关系是()A. B. C. D.4.如图,直线与直线交于点,则方程组解是()A. B. C. D.5.如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3 B.4C.5 D.66.下列等式从左到右的变形,错误的是()A. B.C. D.7.把式子化筒的结果为()A. B. C. D.8.已知点P(﹣1,y1)、点Q(3,y2)在一次函数y=(2m﹣1)x+2的图象上,且y1>y2,则m的取值范围是()A.m< B.m> C.m≥1 D.m<19.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90° B.120° C.270° D.360°10.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为()A.2 B.3 C.5 D.711.下列等式中正确的是()A. B. C. D.12.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(小时)之间的函数关系用图像可以表示为中的()A. B. C. D.二、填空题(每题4分,共24分)13.分解因式:2a2-4ab+2b2=________.14.比较大小:4____3(填“>”“<”或“=”).15.如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交,边于,点.若点为边的中点,点为线段上一动点,则周长的最小值为_________.16.如图,等边△A1C1C2的周长为1,作C1D1⊥A1C2于D1,在C1C2的延长线上取点C3,使D1C3=D1C1,连接D1C3,以C2C3为边作等边△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4为边作等边△A3C3C4;…且点A1,A2,A3,…都在直线C1C2同侧,如此下去,可得到△A1C1C2,△A2C2C3,△A3C3C4,…,△AnCnCn+1,则△AnCnCn+1的周长为_______(n≥1,且n为整数).17.在人体血液中,红细胞直径约为0.00077cm,数据0.00077用科学记数法表示为_____.18.计算3的结果是___.三、解答题(共78分)19.(8分)阅读材料,并回答问题:在一个含有多个字母的式子中,若任意交换两个字母的位置,式子的值不变,则这样的式子叫做对称式.例如:等都是对称式.(1)在下列式子中,属于对称式的序号是_______;①②③④.(2)若,用表示,并判断的表达式是否为对称式;当时,求对称式的值.20.(8分)在中,,,,垂足为,且.,其两边分别交边,于点,.(1)求证:是等边三角形;(2)求证:.21.(8分)计算:[(x2+y2)﹣(x﹣y)2+2y(x﹣y)]÷4y.22.(10分)如图,“复兴一号“水稻的实验田是边长为m米的正方形去掉一个边长为n米(m>n)正方形蓄水池后余下的部分,“复兴二号“水稻的试验田是边长为(m-n)米的正方形,两块试验田的水稻都收获了a千克.(1)哪种水稻的单位面积产量高?为什么?(2)高的单位面积产量比低的单位面积产量高多少?23.(10分)沿面积为正方形边的方向剪出一个长方形,能否使剪出的长方形的长、宽之比为3:2,且面积为?24.(10分)如图,已知函数y=x+1和y=ax+3的图象交于点P,点P的横坐标为1,(1)关于x,y的方程组的解是;(2)a=;(3)求出函数y=x+1和y=ax+3的图象与x轴围成的几何图形的面积.25.(12分)已知:等边三角形,交轴于点,,,,,且、满足.(1)如图,求、的坐标及的长;(2)如图,点是延长线上一点,点是右侧一点,,且.连接.求证:直线必过点关于轴对称的对称点;(3)如图,若点在延长线上,点在延长线上,且,求的值.26.小华同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(一)猜测探究在△ABC中,AB=AC,M是平面内任意一点,将线段AM绕点A按顺时针方向旋转与∠BAC相等的角度,得到线段AN,连接NB.(1)如图1,若M是线段BC上的任意一点,请直接写出∠NAB与∠MAC的数量关系是_______,NB与MC的数量关系是_______;(2)如图2,点E是AB延长线上点,若M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由。(二)拓展应用如图3,在△A1B1C1中,A1B1=8,∠A1B1C1=90°,∠C1=30°,P是B1C1上的任意点,连接A1P,将A1P绕点A1按顺时针方向旅转60°,得到线段A1Q,连接B1Q.求线段B1Q长度的最小值.

参考答案一、选择题(每题4分,共48分)1、C【分析】分别在以上四种情况下以P为圆心,PQ的长度为半径画弧,观察弧与直线AM的交点即为Q点,作出后可得答案.【详解】如下图,当∠PAQ=30°,PQ=6时,以P为圆心,PQ的长度为半径画弧,弧与直线AM有两个交点,作出,发现两个位置的Q都符合题意,所以不唯一,所以①错误.如下图,当∠PAQ=30°,PQ=9时,以P为圆心,PQ的长度为半径画弧,弧与直线AM有两个交点,作出,发现左边位置的Q不符合题意,所以唯一,所以②正确.如下图,当∠PAQ=90°,PQ=10时,以P为圆心,PQ的长度为半径画弧,弧与直线AM有两个交点,作出,发现两个位置的Q都符合题意,但是此时两个三角形全等,所以形状相同,所以唯一,所以③正确.如下图,当∠PAQ=150°,PQ=12时,以P为圆心,PQ的长度为半径画弧,弧与直线AM有两个交点,作出,发现左边位置的Q不符合题意,所以唯一,所以④正确.综上:②③④正确.故选C.【点睛】本题考查的是三角形形状问题,为三角形全等来探索判定方法,也考查三角形的作图,利用对称关系作出另一个Q是关键.2、A【解析】因为在直角三角形中,∠A=30°,BC=4,故∠CBA=60°,根据折叠的性质得:故得:DB=,,根据折叠的性质得:,故△EDB为直角三角形,又因为,故DE=DBtan30°=cm,故答案选A.3、B【分析】根据k=-5知y随x的增大而减小,从而判断大小.【详解】∵一次函数中,k=-5,∴y随x的增大而减小,∵-3<-2<1,∴,故选B.【点睛】本题是对一次函数知识的考查,熟练掌握一次函数k与函数增减的关系是解决本题的关键.4、B【分析】根据一次函数与二元一次方程组的关系解答即可.【详解】∵直线与直线交于点,∴方程组即的解是.故选B.【点睛】本题主要考查一次函数函数与二元一次方程组的关系,函数图象交点坐标为两函数解析式组成的方程组的解.5、D【解析】试题分析:先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选D.考点:翻折变换(折叠问题);勾股定理.6、D【分析】利用分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.逐一计算分析即可.【详解】解:A.,此选项正确;

B.,此选项正确;

C.,此选项正确;

D.,故此选项错误,

故选:D.【点睛】本题考查分式的基本性质,熟练掌握分式的基本性质是解题的关键,注意符号的变化.7、C【分析】添一项2-1后,与第一个括号里的数组成平方差公式,依次这样计算可得结果.【详解】解:(2+1)(22+1)(24+1)(28+1)…(2256+1),

=(2-1)(2+1)(22+1)(24+1)(28+1)…(2256+1),

=(22-1)(22+1)(24+1)(28+1)…(2256+1),

=(24-1)(24+1)(28+1)…(2256+1),

=(28-1)(28+1)…(2256+1),

=(216-1)(216+1)…(2256+1),

=2512-1.故选:C【点睛】本题考查了利用平方差公式进行计算,熟练掌握平方差公式是解题的关键.8、A【解析】分析:由题目条件可判断出一次函数的增减性,则可得到关于m的不等式,可求得m的取值范围.详解:∵点P(−1,y1)、点Q(3,y2)在一次函数y=(2m−1)x+2的图象上,∴当−1<3时,由题意可知y1>y2,∴y随x的增大而减小,∴2m−1<0,解得故选A.点睛:考查一次函数的性质,,一次函数当时,y随着x的增大而增大,当时,y随着x的增大而减小.9、B【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.【详解】∵图中是三个等边三角形,∠3=60°,

∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,

∠BAC=180°-60°-∠1=120°-∠1,

∵∠ABC+∠ACB+∠BAC=180°,

∴60°+(120°-∠2)+(120°-∠1)=180°,

∴∠1+∠2=120°.

故选B.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.10、C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1.故选C.考点:众数;中位数.11、B【分析】根据分式化简依次判断即可.【详解】A、,故A选项错误;B、,故B选项正确;C、,故C选项错误;D、,故D选项错误;故选B.【点睛】本题是对分式化简的考查,熟练掌握分式运算是解决本题的关键.12、B【分析】根据蜡烛剩余的长度=总长度-燃烧的长度就可以得出函数的解析式,由题意求出自变量的取值范围就可以得出函数图象.【详解】解:由题意,得

y=30-5t,

∵y≥0,t≥0,

∴30-5t≥0,

∴t≤6,

∴0≤t≤6,

∴y=30-5t是降函数且图象是一条线段.

故选B.【点睛】本题考查一次函数的解析式的运用,一次函数的与实际问题的关系的运用,一次函数的图象的运用,自变量的取值范围的运用,解答时求出函数解析式及自变量的范围是关键.二、填空题(每题4分,共24分)13、【分析】根据先提取公因式再利用公式法因式分解即可.【详解】原式=2(a2-2ab+b2)=【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法.14、<.【分析】先求出4=,,再比较即可.【详解】∵,,∴4<,故答案为:<.【点睛】本题考查了实数的大小比较,能选择适当的方法比较两个实数的大小是解此题的关键.15、11【分析】连接AD,交EF于点M,根据的垂直平分线是可知CM=AM,求周长的最小值及求CM+DM的最小值,当A、M、D三点共线时,AM+AD最小,即周长的最小.【详解】解:连接AD,交EF于点M,∵△ABC为等腰三角形,点为边的中点,底边长为∴AD⊥BC,CD=3又∵面积是24,即,∴AD=8,又∵的垂直平分线是,∴AM=CM,∴周长=CM+DM+CD=AM+DM+CD∴求周长最小值即求AM+DM的最小值,当A、M、D三点共线时,AM+AD最小,即周长的最小,周长=AD+CD=8+3=11最小.【点睛】本题考查了利用轴对称变换解决最短路径问题,解题的关键是找出对称点,确定最小值的位置.16、【分析】利用等边三角形的性质和特殊角去解题.【详解】解:等边三角形的周长为1,作于点,的周长=的周长=,的周长分别为故答案为:【点睛】本题考查等边三角形的性质以及规律性问题的解答.17、7.7×10﹣1【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解:0.00077=7.7×10-1,故答案为7.7×10-1.点睛:本题主要考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.18、.【分析】首先化简二次根式进而计算得出答案.【详解】原式=32.故答案为.【点睛】本题考查了二次根式的加减,正确化简二次根式是解题关键.三、解答题(共78分)19、(1)①③;(2)【分析】(1)根据对称式的定义进行判断;(2)由可知,再根据对称式的定义判断即可;当时,,代入求解即可.【详解】(1)①③;(2)∵∴,∴的表达式都是对称式;当时,,∴,∴.【点睛】本题考查分式的化简求值,以对称式的方式考查,有一定的难度,需要准确理解对称式的定义.20、(1)详见解析;(2)详见解析.【分析】(1)连接BD,根据等腰三角形性质得∠BAD=∠DAC=×120°,再根据等边三角形判定可得结论;(2)根据等边三角形性质得∠ABD=∠ADB=60°,BD=AD,证△BDE≌△ADF(ASA)可得.【详解】(1)证明:连接BD,

∵AB=AC,AD⊥BC,

∴∠BAD=∠DAC=∠BAC,

∵∠BAC=120°,

∴∠BAD=∠DAC=×120°=60°,

∵AD=AB,

∴△ABD是等边三角形;

(2)证明:∵△ABD是等边三角形,

∴∠ABD=∠ADB=60°,BD=AD

∵∠EDF=60°,

∴∠BDE=∠ADF,

在△BDE与△ADF中,

∴△BDE≌△ADF(ASA),

∴BE=AF.【点睛】本题考查了全等三角形的性质定理与判定定理、等边三角形的性质,解决本题的关键是证明△BDE≌△ADF.21、x﹣y【分析】首先利用完全平方公式计算小括号,然后再去括号,合并同类项,最后再计算除法即可.【详解】解:原式=(x2+y2﹣x2+2xy﹣y2+2xy﹣2y2)÷4y,=(4xy﹣2y2)÷4y,=x﹣y.【点睛】此题主要考查了整式的混合运算,关键是掌握计算顺序:有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.22、(1)“复兴二号”水稻的单位面积产量高,理由见解析;(2)kg【分析】(1)根据题意分别求出两种水稻得单位产量,比较即可得到结果;(2)根据题意列出算式,计算即可得到结果.【详解】(1)根据题意知,“复兴一号“水稻的实验田的面积为,“复兴二号“水稻的实验田的面积为,∴“复兴一号“水稻的实验田的单位产量为(千克/米2),“复兴二号“水稻的实验田的单位产量为(千克/米2),则-==,∵m、n均为正数且m>n,∴-<0,∴“复兴二号”水稻的单位面积产量高;(2)由(1)知,∴高的单位面积产量比低的单位面积产量高(kg).【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.23、不能使剪出的长方形纸片的长宽之比为3:1,且面积为48cm1.【分析】可设它的长为,则宽为,根据面积公式列出一元二次方程解答即可求出的值,再代入长宽的表达式,看是否符合条件即可.【详解】设长方形纸片的长为,则宽为,则,解得:,∵正方形面积为60cm1,∴边长为,长方形纸片的长为:1×3=6,∵,,∴,所以沿此面积为60cm1正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为3:1,且面积为48cm1.【点睛】本题考查了一元二次方程的应用以及算术平方根和正方形性质等知识,解题的关键是先求出所裁出的长方形纸片的长.24、(1);(2)-1;(3)2【分析】(1)先求出点P为(1,2),再把P点代入解析式即可解答.(2)把P(1,2)代入y=ax+3,即可解答.(3)根据y=x+1与x轴的交点为(﹣1,0),y=﹣x+3与x轴的交点为(3,0),即可得到这两个交点之间的距离,再根据三角形的面积公式,即可解答.【详解】(1)把x=1代入y=x+1,得出y=2,函数y=x+1和y=ax+3的图象交于点P(1,2),即x=1,y=2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为;(2)把P(1,2)代入y=ax+3,得2=a+3,解得a=﹣1.故答案为﹣1;(3)∵函数y=x+1与x轴的交点为(﹣1,0),y=﹣x+3与x轴的交点为(3,0),∴这两个交点之间的距离为3﹣(﹣1)=2,∵P(1,2),∴函数y=x+1和y=ax+3的图象与x轴围成的几何图形的面积为:×2×2=2.【点睛】此题考查一次函数与二元一次方程,解题关键在于把已知点代入解析式求解.25、(1)A(-3,0),B(1,0),CD=2;(2)见解析;(3)6.【分析】(1)首先利用绝对值的非负性得出,即可得出点A、B的坐标;得出AB、BC,然后由∠CBA=60°得出∠ODB=30°,进而得出BD,得出CD;(2)首先判定△CEP、△ABC为等边三角形,进而判定△CBE≌△CAP,然后利用角和边的关系得出DO=OF,即可判定点D、F关于轴对称,直线必过点关于轴对称的对称点;(3)作DI∥AB,判定△CDI为等边三角形,然后判定△MDI≌△NDB,得出NB=MI,进而得出的值.【详解】(1)∵,即∴∴∴A(-3,0),B(1,0),∴AB=BC=4,∵∠CBA=60°∴∠ODB=30°∴BD=2OB=2∴CD=BC-BD=4-2=2;(2)延长EB交轴于F,连接CE,如图所示:∵,∴△CEP为等边三角形∴∠ECP=60°,CE=CP由(1)中得知,△ABC为等边三角形∴∠ACB=60°,CA=CB∴∠ACB+∠BCP=∠ECP+∠BCP∴∠ACP=∠BCE∴△CBE≌△CAP(SAS)∴∠CEB=∠CPA∴∠EBP=∠ECP=60°∴∠FBO=∠DBO=60°∴∠BFO=∠BDO=30°∴BD=BF∵BO⊥DF∴DO=OF∴点D、F关于轴对称∴直线必过点关于轴对称的对称点;(3)过点D作DI∥AB交AC于I,如图所示:由(2)中△ABC为等边三角形,则△CDI为等边三角形,∴DI=CD=DB∴∠MID=120°=∠DBN∴△MDI≌△NDB(AAS)∴NB=MI∴AN-AM=(AB+NB)-AM=AB+MI-AM=AB+AI=AB+BD=4+2=6【点睛】此题主要考查等边三角形的性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论