2025届河南省鹤壁市八年级数学第一学期期末复习检测模拟试题含解析_第1页
2025届河南省鹤壁市八年级数学第一学期期末复习检测模拟试题含解析_第2页
2025届河南省鹤壁市八年级数学第一学期期末复习检测模拟试题含解析_第3页
2025届河南省鹤壁市八年级数学第一学期期末复习检测模拟试题含解析_第4页
2025届河南省鹤壁市八年级数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南省鹤壁市八年级数学第一学期期末复习检测模拟试题题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.等边,,于点、是的中点,点在线段上运动,则的最小值是()A.6 B. C. D.32.为参加“爱我家园”摄影赛,小明同学将参与植树活动的照片放大为长,宽的形状,又精心在四周加上了宽的木框,则这幅摄影作品所占的面积是()A. B.C. D.3.某文化用品商店分两批购进同一种学生用品,已知第二批购进的数量是第一批购进数量的3倍,两批购进的单价和所用的资金如下表:单价(元)所用资金(元)第一批2000第二批6300则求第一批购进的单价可列方程为()A. B.C. D.4.如图,一张长方形纸片的长,宽,点在边上,点在边上,将四边形沿着折叠后,点落在边的中点处,则等于()

A. B. C. D.5.下列交通标识中,是轴对称图形的是()A. B. C. D.6.下列各式中正确的是()A. B. C. D.7.下列说法正确的是()A.对角线互相垂直且相等的四边形是菱形 B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是平行四边形 D.对角线相等且互相平分的四边形是矩形8.八年级学生去距学校s千米的博物馆参观,一部分同学骑自行车先走,过了1小时后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的m倍,设骑车同学的速度为x千米/小时,则可列方程()A.=+1 B.-=1 C.=+1 D.=19.分式方程=的解是()A.x=﹣1 B.x=0 C.x=1 D.无解10.如图,在中,,CD是高,BE平分∠ABC交CD于点E,EF∥AC交AB于点F,交BC于点G.在结论:(1);(2);(3);(4)中,一定成立的有()A.1个 B.2个 C.3个 D.4个11.直线过点,,则的值是()A. B. C. D.12.有下列五个命题:①如果,那么;②内错角相等;③垂线段最短;④带根号的数都是无理数;⑤三角形的一个外角大于任何一个内角.其中真命题的个数为()A.1 B.2 C.3 D.4二、填空题(每题4分,共24分)13.如图,直线,直角三角板的直角顶点落在直线上,若,则等于_______.14.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为_______.15.点(3,)关于轴的对称点的坐标是__________.16.某种病菌的形状为球形,直径约是,用科学记数法表示这个数为______.17.如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,,,将四个直角三角形中边长为3的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长(图中实线部分)是__________.18.当________时,分式无意义.三、解答题(共78分)19.(8分)在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB=OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.20.(8分)已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=BF;(3)CE与BG的大小关系如何?试证明你的结论.21.(8分)2019年是中国建国70周年,作为新时期的青少年,我们应该肩负起实现祖国伟大复兴的责任,为了培养学生的爱国主义情怀,我校学生和老师在5月下旬集体乘车去抗日战争纪念馆研学,已知学生的人数是老师人数的12倍多20人,学生和老师总人数有540人.(1)请求出去抗日战争纪念馆研学的学生和老师的人数各是多少?(2)如果学校准备租赁型车和型车共14辆(其中型车最多7辆),已知型车每年最车可以载35人,型车每车最多可以载45人,共有几种租车方案?(3)已知型车日租金为2000元,型车日租金为3000元,设租赁型大巴车辆,求出租赁总租金为元与的函数解析式,并求出最经济的租车方案.22.(10分)如图,平分,,于,于.(1)若,求的度数;(2)若,,.求四边形的面积.23.(10分)在中,,,、分别是的高和角平分线.求的度数.24.(10分)织金县某中学300名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)在这次调查中D类型有多少名学生?(2)写出被调查学生每人植树量的众数、中位数;(3)求被调查学生每人植树量的平均数,并估计这300名学生共植树多少棵?25.(12分)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)26.如图,在中,点M为BC边上的中点,连结AM,D是线段AM上一点(不与点A重合).过点D作,过点C作,连结AE.(1)如图1,当点D与M重合时,求证:①;②四边形ABDE是平行四边形.(2)如图2,延长BD交AC于点H,若,且,求的度数.

参考答案一、选择题(每题4分,共48分)1、B【分析】如图,作点E关于直线AD的对称点E′,连接CE′交AD于F′.由EF+FC=FE′+FC,所以当C、E′、F共线时,EF+CF最小,由△ABC是等边三角形,AB=BC=AC=6,AE=AE′=3,推出AE′=E′B,解直角三角形即可得到结论.【详解】解:如图,作点关于直线的对称点,连接交于.∵,∴当、、共线时,最小值,∵是等边三角形,,,∴,,∴,,∴.故选:B.【点睛】本题考查轴对称、等边三角形的性质、垂线段最短等知识,解题的关键是灵活运用所学知识解决最值问题.2、D【分析】此题涉及面积公式的运用,解答时直接运用面积的公式求出答案.【详解】根据题意可知,这幅摄影作品占的面积是a2+4(a+4)+4(a+4)−4×4=故选:D.【点睛】列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系列出式子.3、B【分析】先根据“购进的数量=所用资金÷单价”得到第一批和第二批购进学生用品的数量,再根据“第二批购进的数量是第一批购进数量的3倍”即得答案.【详解】解:第一批购进的学生用品数量为,第二批购进的学生用品数量为,根据题意列方程得:.故选:B.【点睛】本题考查了分式方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.4、D【分析】连接BE,根据折叠的性质证明△ABE≌△,得到BE=EG,根据点G是AD的中点,AD=4得到AE=2-EG=2-BE,再根据勾股定理即可求出BE得到EG.【详解】连接BE,由折叠得:,=90°,,∴△ABE≌△,∴BE=EG,∵点G是AD的中点,AD=4,∴AG=2,即AE+EG=2,∴AE=2-EG=2-BE,在Rt△ABE中,,∴,∴EG=,故选:D.【点睛】此题考查折叠的性质,勾股定理,三角形全等的判定及性质,利用折叠证明三角形全等,目的是证得EG=BE,由此利用勾股定理解题.5、B【解析】某个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形,以上图形中,B是轴对称图形,故选B6、D【分析】分别根据算术平方根、立方根的性质化简即可判断.【详解】解:A.,故选项A不合题意;

B.,故选项B不合题意;

C.,故选项C不合题意;

D.,故选项D符合题意.

故选D.【点睛】本题主要考查了算术平方根和立方根的定义,熟练掌握算术平方根和立方根的性质是解答本题的关键.7、D【分析】利用菱形的判定、矩形的判定定理、平行四边形的判定定理分别判断后即可确定正确的选项.【详解】A、对角线互相垂直且相等的四边形可能是等腰梯形,故错误;

B、对角线相等的平行四边形才是矩形,故错误;

C、对角线互相垂直的四边形不一定是平行四边形,故错误;

D、对角线相等且互相平分的四边形是矩形,正确.

故选:D.【点睛】此题考查菱形的判定、矩形的判定定理、平行四边形的判定,了解各个图形的判定定理是解题的关键,难度不大.8、A【分析】设骑车同学的速度为x千米/小时,则汽车的速度为mx千米/小时,根据时间=路程÷速度结合骑车的同学比乘车的同学多用1小时,即可得出关于x的分式方程,此题得解.【详解】设骑车同学的速度为x千米/小时,则汽车的速度为mx千米/小时,根据题意得:=+1.故选:A.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.9、A【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:去分母得:2x=x﹣1,解得:x=﹣1,经检验x=﹣1是分式方程的解,故选:A.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.10、B【分析】根据两直线平行,同旁内角互补求出∠CGE=∠BCA=90°,然后根据等角的余角相等即可求出∠EFD=∠BCD;只有△ABC是等腰直角三角形时AD=CD,CG=EG;利用“角角边”证明△BCE和△BFE全等,然后根据全等三角形对应边相等可得BF=BC.【详解】∵EF∥AC,∠BCA=90°,∴∠CGE=∠BCA=90°,∴∠BCD+∠CEG=90°,又∵CD是高,∴∠EFD+∠FED=90°,∵∠CEG=∠FED(对顶角相等),∴∠EFD=∠BCD,故(1)正确;只有∠A=45°,即△ABC是等腰直角三角形时,AD=CD,CG=EG而立,故(2)(3)不一定成立,错误;∵BE平分∠ABC,∴∠EBC=∠EBF,在△BCE和△BFE中,,∴△BCE≌△BFE(AAS),∴BF=BC,故(4)正确,综上所述,正确的有(1)(4)共2个.故选:B.【点睛】本题主要考查了角平分线的性质,全等三角形的判定与性质,直角三角形的性质,等腰直角三角形的性质,综合题,但难度不大,熟记性质是解题的关键.11、B【分析】分别将点,代入即可计算解答.【详解】解:分别将点,代入,得:,解得,故答案为:B.【点睛】本题考查了待定系数法求正比例函数解析式,将点的坐标代入解析式解方程是解题的关键.12、A【分析】①根据任何非零数的平方均为正数即得;②根据两直线平行内错角相等即得;③根据直线外一点与直线上所有点的连线段中,垂线段最短即得;④根据无理数的定义:无限不循环小数是无理数即得;⑤根据三角形外角的性质:三角形的一个外角大于和它不相邻的任何一个内角即得.【详解】∵当时,∴命题①为假命题;∵内错角相等的前提是两直线平行∴命题②是假命题;∵直线外一点与直线上所有点的连线段中,垂线段最短,简称“垂线段最短”∴命题③是真命题;∵有理数∴命题④是假命题;∵在一个钝角三角形中,与钝角相邻的外角是锐角,且这个锐角小于钝角∴命题⑤是假命题.∴只有1个真命题.故选:A.【点睛】本题考查了平方根的性质,平行线的性质,垂线公理,无理数的定义及三角形外角的性质,正确理解基础知识的内涵和外延是解题关键.二、填空题(每题4分,共24分)13、【分析】如图,利用平行线的性质得出∠3=35°,然后进一步得出∠4的度数,从而再次利用平行线性质得出答案即可.【详解】如图所示,∵,,∴,∴∠4=90°−∠3=55°,∵,∴∠2=∠4=55°.故答案为:55°.【点睛】本题主要考查了平行线的性质,熟练掌握相关概念是解题关键.14、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:数据0.000000007用科学记数法表示为7×10-1.

故答案为:.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15、(3,2)【解析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P'的坐标是(x,﹣y),进而求出即可.【详解】点(3,﹣2)关于x轴的对称点坐标是(3,2).故答案为(3,2).【点睛】本题考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题的关键.16、【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】0.000000102的小数点向右移动7位得到1.02,所以0.000000102用科学记数法表示为,故答案为.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17、【分析】由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.【详解】依题意,设“数学风车”中的四个直角三角形的斜边长为x,则x2=62+22=40所以x=所以“数学风车”的周长是:(+3)×4=.【点睛】本题是勾股定理在实际情况中应用,并注意隐含的已知条件来解答此类题.18、=1【解析】分式的分母等于0时,分式无意义.【详解】解:当即时,分式无意义.故答案为:【点睛】本题考查了分式无意义的条件,理解分式有意义无意义的条件是解题的关键.三、解答题(共78分)19、(1)y=x+6;(2)D(﹣,3),S△BCD=4;(3)存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0)【分析】(1)根据待定系数法可得直线l1的解析式;(2)如图1,过C作CH⊥x轴于H,求点E的坐标,利用C和E两点的坐标求直线l2的解析式,与直线l1列方程组可得点D的坐标,利用面积和可得△BCD的面积;(3)分四种情况:在x轴和y轴上,证明△DMQ≌△QNC(AAS),得DM=QN,QM=CN,设D(m,m+6)(m<0),表示点Q的坐标,根据OQ的长列方程可得m的值,从而得到结论.【详解】解:(1)y=k1x+6,当x=0时,y=6,∴OB=6,∵OB=OA,∴OA=2,∴A(﹣2,0),把A(﹣2,0)代入:y=k1x+6中得:﹣2k1+6=0,k1=,∴直线l1的解析式为:y=x+6;(2)如图1,过C作CH⊥x轴于H,∵C(,1),∴OH=,CH=1,Rt△ABO中,,∴AB=2OA,∴∠OBA=30°,∠OAB=60°,∵CD⊥AB,∴∠ADE=90°,∴∠AED=30°,∴EH=,∴OE=OH+EH=2,∴E(2,0),把E(2,0)和C(,1)代入y=k2x+b中得:,解得:,∴直线l2:y=x+2,∴F(0,2)即BF=6﹣2=4,则,解得,∴D(﹣,3),∴S△BCD=BF(xC﹣xD)=;(3)分四种情况:①当Q在y轴的正半轴上时,如图2,过D作DM⊥y轴于M,过C作CN⊥y轴于N,∵△QCD是以CD为底边的等腰直角三角形,∴∠CQD=90°,CQ=DQ,∴∠DMQ=∠CNQ=90°,∴∠MDQ=∠CQN,∴△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,﹣m+1),∴OQ=QN+ON=OM+QM,即﹣m+1=m+6+,,∴Q(0,2);②当Q在x轴的负半轴上时,如图3,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m+1,0),∴OQ=QN﹣ON=OM﹣QM,即m+6-=﹣m﹣1,m=5﹣4,∴Q(6﹣4,0);③当Q在x轴的负半轴上时,如图4,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m﹣1,0),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6﹣=﹣m+1,m=﹣4﹣5,∴Q(﹣4﹣6,0);④当Q在y轴的负半轴上时,如图5,过D作DM⊥y轴于M,过C作CN⊥y轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,m+1),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6+=﹣m﹣1,m=﹣2﹣1,∴Q(0,﹣2);综上,存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0).【点睛】本题是综合了一次函数的图象与性质,全等三角形的性质与判定,直角三角形与等腰直角三角形的性质等知识的分情况讨论动点动图问题,在熟练掌握知识的基础上,需要根据情况作出辅助线,或者作出符合题意的图象后分情况讨论.20、(1)证明见解析;(2)证明见解析;(3)BG=CE.证明见解析.【分析】(1)证明△BDF≌△CDA,得到BF=AC;(2)由(1)问可知AC=BF,所以CE=AE=BF;(3)BG=CG,CG在△EGC中,CE<CG.【详解】解:(1)证明:因为CD⊥AB,∠ABC=45°,所以△BCD是等腰直角三角形.所以BD=CD.在Rt△DFB和Rt△DAC中,因为∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,又∠BFD=∠EFC,所以∠DBF=∠DCA.又因为∠BDF=∠CDA=90°,BD=CD,.所以Rt△DFB≌Rt△DAC.所以BF=AC.(2)证明:在Rt△BEA和Rt△BEC中,因为BE平分∠ABC,所以∠ABE=∠CBE.又因为BE=BE,∠BEA=∠BEC=90°,所以Rt△BEA≌Rt△BEC.所以CE=AE=AC.又由(1),知BF=AC,所以CE=AC=BF.(3)BG=CE.证明:连接CG,因为△BCD是等腰直角三角形,所以BD=CD,又H是BC边的中点,所以DH垂直平分BC.所以BG=CG,在Rt△CEG中,∠GCE=45°,所以BG=CG=CE.【点睛】本题考查了全等三角形的证明方法,熟练掌握全等的证明方法是本题的解题关键.21、(1)去抗日战争纪念馆研学的学生有500人,老师有40人;(2)3;(3)租赁A型大巴车9辆和租赁B型大巴车5辆.【分析】(1)设去参观抗日战争纪念馆学生有x人,老师有y人,根据题意,得出关于x,y的二元一次方程组,解之即可得出结论;(2)设租赁B型大巴车m辆,则租赁A型大巴车(14-m)辆,由B型大巴车最多有1辆及租赁的14辆车至少能坐下540人,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为正整数即可得出m的值,从而得到租车方案;(3)设租赁总租金为w元,根据总租金=每辆车的租金金额×租车辆数,即可得出w关于m的函数关系式,再利用一次函数的性质即可找出最经济的租赁车辆方案.【详解】解:(1)设去去抗日战争纪念馆研学的学生有x人,老师有y人,依题意,得:,解得:.答:去抗日战争纪念馆研学的学生有500人,老师有40人.(2)设租赁B型大巴车m辆,则租赁A型大巴车(14-m)辆,依题意,得:,解得:5≤m≤1.∵m为正整数,∴m=5,6或1.∴租车方案有3种:①租A型车9辆,B型车5辆;②租A型车8辆,B型车6辆;③租A型车1辆,B型车1辆;(3)设租赁总租金为w元,依题意,得:w=3000m+2000(14-m)=1000m+28000,∵1000>0,∴w的值随m值的增大而增大,∴当m=5时,w取得最小值,∴最经济的租赁车辆方案为:租赁A型大巴车9辆和租赁B型大巴车5辆.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据各数量之间的关系,正确列出一元一次不等式组.22、(1)∠CDA=120°;(2)9【分析】(1)根据角平分线的性质得到AE=AF,进而证明Rt△ABE≌Rt△ADF(HL),再根据全等三角形的性质即可得到∠CDA的度数;(2)先证明Rt△ACE与Rt△ACF(HL),得到CE=CF,再得到CE的长度,将四边形的面积分成△ACE与△ACD的面积计算即可.【详解】解:(1)∵平分,于,于∴AE=AF,∠AEB=∠AFD=90°,在Rt△ABE与Rt△ADF中,∴Rt△ABE≌Rt△ADF(HL)∴∠ABE=∠ADF=60°,∴∠CDA=180°-∠ADF=120°,故∠CDA=120°.(2)由(1)可得Rt△ABE≌Rt△ADF∴BE=DF,又∵在Rt△ACE与Rt△ACF中∴Rt△ACE与Rt△ACF(HL)∴CE=CFCE=CF=CD+DF=CD+BE=5,又∵∴AF=AE=2∴四边形AECD的面积=故四边形的面积为9【点睛】本题考查了角平分线的性质定理、全等三角形的判定与性质,解题的关键是掌握角平分线的性质.23、∠DAE=20°【分析】先根据三角形的内角和定理得到∠BAC的度数,再利用角平分线的定义求出∠BAE=∠BAC,而∠BAD=90°-∠B,然后利用∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论