2025届浙江省台州市温岭市五校联考八年级数学第一学期期末达标检测试题含解析_第1页
2025届浙江省台州市温岭市五校联考八年级数学第一学期期末达标检测试题含解析_第2页
2025届浙江省台州市温岭市五校联考八年级数学第一学期期末达标检测试题含解析_第3页
2025届浙江省台州市温岭市五校联考八年级数学第一学期期末达标检测试题含解析_第4页
2025届浙江省台州市温岭市五校联考八年级数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省台州市温岭市五校联考八年级数学第一学期期末达标检测试题达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列各组数为勾股数的是()A.6,12,13B.3,4,7C.8,15,16D.5,12,132.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4 B.8 C.6 D.103.把分式中的x、y的值同时扩大为原来的10倍,则分式的值()A.缩小为原来的 B.不变C.扩大为原来的10倍 D.扩大为原来的100倍4.若多项式与多项式的积中不含x的一次项,则(

)A. B. C. D.5.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm6.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面处折断,树尖恰好碰到地面,经测量,则树高为().A. B. C. D.7.下列图形中是轴对称图形的有()A. B. C. D.8.若解关于的方程时产生增根,那么的值为()A.1 B.2 C.0 D.-19.以下列各组线段为边,能组成三角形的是()A.2cm,5cm,8cmB.3cm,3cm,6cmC.3cm,4cm,5cmD.1cm,2cm,3cm10.下列说法正确的是()A.(﹣3)2的平方根是3 B.=±4C.1的平方根是1 D.4的算术平方根是211.下列各组数据中,不能作为直角三角形三边长的是()A.9,12,15 B.3,4,5 C.1,2,3 D.40,41,912.的平方根是()A.2 B.-2 C.4 D.2二、填空题(每题4分,共24分)13.在△ABC中,AB=AD=CD,且∠C=40°,则∠BAD的度数为__________.14.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为_____.15.为保证数据安全,通常会将数据经过加密的方式进行保存,例如:将一个多项式因式分解为,当时,,,将得到的三个数字按照从小到大的顺序排列得到加密数据:192021,根据上述方法.当时,多项式分解因式后形成的加密数据是______.16.在平面直角坐标系中,已知直线与x轴,y轴分别交于点A,B,线段AB绕点A顺时针方向旋转90°得线段AC,连接BC.(1)线段AB的长为_____;(2)若该平面内存在点P(a,1),使△ABP与△ABC的面积相等,则a的值为_____.17.如图,在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,与y轴交于点B,点P在线段AB上,PC⊥x轴于点C,则△PCO周长的最小值为_____18.在中,,若,则________________度三、解答题(共78分)19.(8分)(1)先化简,再求值:,其中(2)解分式方程:20.(8分)化简:(1);(2).21.(8分)如图,在中,厘米,厘米,点为的中点,点在线段上以2厘米/秒的速度由点向点运动,同时点在线段上由点向点运动.(1)若点的运动速度与点相同,经过1秒后,与是否全等,请说明理由.(2)若点的运动速度与点不同,当点的运动速度为多少时,能够使与全等?22.(10分)如图1,在中,,,直线经过点,且于点,于点.易得(不需要证明).(1)当直线绕点旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时之间的数量关系,并说明理由;(2)当直线绕点旋转到图3的位置时,其余条件不变,请直接写出此时之间的数量关系(不需要证明).23.(10分)如图,已知四边形各顶点的坐标分别为.(1)请你在坐标系中画出四边形,并画出其关于轴对称的四边形;(2)尺规作图:求作一点,使得,且为等腰三角形.(要求:仅找一个点即可,保留作图痕迹,不写作法)24.(10分)如图,在中,点是边的中点,,,.求证:.25.(12分)如图,在平面直角坐标系中,A(−1,5),B(−1,0),C(−4,3),(1)在图中作出△ABC关于y轴对称图形△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)求出△ABC的面积.26.如图,已知直线AB与CD相交于点O,OE平分∠BOD,OE⊥OF,且∠AOC=40°,求∠COF的度数.

参考答案一、选择题(每题4分,共48分)1、D【解析】A选项:62+122≠132,故此选项错误;

B选项:32+42≠72,故此选项错误;

C选项:因为82+152≠162,故此选项错误;

D选项:52+122=132,故此选项正确.

故选D.【点睛】一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.2、B【详解】解:设AG与BF交点为O,∵AB=AF,AG平分∠BAD,AO=AO,∴可证△ABO≌△AFO,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF∥BE,∴可证△AOF≌△EOB,AO=EO,∴AE=2AO=8,故选B.【点睛】本题考查角平分线的作图原理和平行四边形的性质.3、C【分析】根据分式的性质即可计算判断.【详解】x、y的值同时扩大为原来的10倍后,分式变为==10×,故扩大为原来的10倍,选C.【点睛】此题主要考查分式的性质,解题的关键是根据题意进行变形.4、D【分析】根据题意可列式,然后展开之后只要使含x的一次项系数为0即可求解.【详解】解:由题意得:;因为多项式与多项式的积中不含x的一次项,所以,解得;故选D.【点睛】本题主要考查多项式,熟练掌握多项式的概念是解题的关键.5、D【分析】解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.【详解】延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1.则剪去的直角三角形的斜边长为1cm.故选D.【点睛】本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算.6、D【分析】根据题意画出三角形,用勾股定理求出BC的长,树高就是AC+BC的长.【详解】解:根据题意,如图,画出一个三角形ABC,AC=6m,AB=8m,∵,∴,∴,树高=.故选:D.【点睛】本题考查勾股定理的应用,解题的关键是掌握用勾股定理解三角形的方法.7、B【解析】根据轴对称图形的定义,逐一判断选项,即可得到答案.【详解】A.是中心对称图形,不是轴对称图形,不符合题意,B.是轴对称图形,符合题意,C.是中心对称图形,不是轴对称图形,不符合题意,D.既不是中心对称图形,也不是轴对称图形,不符合题意,故选B.【点睛】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.8、A【分析】关于的方程有增根,那么最简公分母为0,所以增根是x=2,把增根x=2代入化为整式方程的方程即可求出未知字母的值.【详解】将原方程两边都乘(x-2)得:,整理得,∵方程有增根,∴最简公分母为0,即增根是x=2;把x=2代入整式方程,得m=1.故答案为:A.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:根据最简公分母确定增根的值;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.9、C【解析】三角形中,任意两边之和大于第三边,任意两边之差小于第三边,据此进行解答即可.【详解】解:2cm+5cm<8cm,A不能组成三角形;3cm+3cm=6cm,B不能组成三角形;3cm+4cm>5cm,C能组成三角形;1cm+2cm=3cm,D不能组成三角形;故选:C.【点睛】本题考查了三角形的三边关系.10、D【解析】根据平方根和算术平方根的定义解答即可.【详解】A、(﹣3)2的平方根是±3,故该项错误;B、,故该项错误;C、1的平方根是±1,故该项错误;D、4的算术平方根是2,故该项正确.故选D.【点睛】本题考查了平方根、算术平方根的定义,解决本题的关键是熟记平方根、算术平方根的定义.11、C【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.【详解】解:A、92+122=152,故是直角三角形,不符合题意;B、32+42=52,故是直角三角形,不符合题意;C、12+22≠32,故不是直角三角形,符合题意;D、92+402=412,故是直角三角形,不符合题意.故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.12、D【分析】根据算术平方根的定义先求出,然后根据平方根的定义即可得出结论.【详解】解:∵=4∴的平方根是2故选D.【点睛】此题考查的是求一个数的算术平方根和平方根,掌握算术平方根的定义和平方根的定义是解决此题的关键.二、填空题(每题4分,共24分)13、20°【分析】根据可得出,再利用三角形外角的性质得出,然后利用得出,最后利用三角形内角和即可求出答案.【详解】故答案为:20°.【点睛】本题主要考查等腰三角形的性质及三角形外角的性质,内角和定理,掌握等腰三角形的性质是解题的关键.14、20°.【分析】依据题意,设出顶角度数,根据“特征值”可知底角度数,再由三角形内角和定理即可求得.【详解】如图.∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:4,∵∠A+∠B+∠C=180°,∴∠A+4∠A+4∠A=180°,即9∠A=180°,∴∠A=20°,故答案为:20°.【点睛】本题主要考查了等腰三角形的性质以及三角形内角和定理的知识,灵活运用这部分知识是解决本题的关键.15、1【分析】先将多项式分解因式,再计算当时各个因式的值,然后将得到的各因式的数字按照从小到大的顺序排列即得答案.【详解】解:,当时,,.∴多项式分解因式后形成的加密数据是:1.故答案为:1.【点睛】本题考查了多项式的因式分解,属于基本题型,正确理解题意、熟练掌握分解因式的方法是解答的关键.16、5-4或【分析】(1)根据直线解析式可以求出A、B两点坐标,然后运用勾股定理即可求出AB的长度;(2)由(1)中AB的长度可求等腰直角△ABC的面积,进而可知△ABP的面积,由于没有明确点P的位置,要分类讨论利用三角形的和或差表示出面积,列出并解出方程即可得到答案.【详解】(1)∵直线与x轴,y轴分别交于点A、B,∴A(3,0),B(0,4),∴;(2)∵AB=5,∴,∴,当P在第二象限时,如图所示,连接OP,∵即,∴;当P在第一象限时,如图所示,连接OP,∵即,∴;故答案为:5;-4或.【点睛】本题考查了一次函数的综合应用,做题时要认真观察图形,要会对图象进行拼接来表示出三角形的面积,而分类讨论是正确解答本题的关键.17、【解析】先根据一次函数列出周长的式子,再根据垂线公理找到使周长最小时点P的位置,然后结合一次函数的性质、等腰直角三角形的性质求解即可.【详解】由题意,可设点P的坐标为周长为则求周长的最小值即为求OP的最小值如图,过点O作由垂线公理得,OP的最小值为OD,即此时点P与点D重合由直线的解析式得,,则是等腰直角三角形,是等腰直角三角形,解得则周长的最小值为故答案为:.【点睛】本题考查了一次函数的几何应用、等腰直角三角形的判定与性质、垂线公理等知识点,依据题意列出周长的式子,从而找到使其最小的点P位置是解题关键.18、1【分析】根据等腰三角形的性质和三角形内角和定理即可求出答案.【详解】∵∴∵∴故答案为:1.【点睛】本题主要考查等腰三角形的性质和三角形内角和定理,掌握等腰三角形的性质和三角形内角和定理是解题的关键.三、解答题(共78分)19、(1),8;(2)原方程无解【分析】(1)现根据分式的运算法则化简分式,再将a的值代入即可;(2)先变形,再把分式方程转化成整式方程,求出方程的解,再进行检验即可.【详解】解:(1)原式=====,当a=4时,原式=;(2)解:解:原方程化为:方程两边都乘以(y+2)(y-2)得:化简得,2y=4,解得:y=2,

经检验:y=2不是原方程的解.原方程无解.【点睛】本题考查了分式的化简求值以及解分式方程,分式的化简求值注意运用运算法则先化简再代入计算;解分式方程的关键能把分式方程转化成整式方程并注意要检验.20、(1);(2)【分析】(1)利用完全平方公式和平方差公式展开,合并同类项即可;(2)利用多项式除以单项式进行运算,同时利用完全平方公式展开,合并同类项即可.【详解】(1);(2).【点睛】本题是整式的混合运算,考查了完全平方公式,平方差公式,多项式除以单项式,熟练掌握整式混合运算的法则是解题的关键.21、(1)全等,见解析;(2)当的运动速度为厘米时,与全等【分析】(1)根据题意分别求得两个三角形中的边长,再利用即可判定两个三角形全等.(2)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度时间公式,求得点运动的时间,即可求得点的运动速度.【详解】解:(1)经过1秒后,厘米∵厘米,为的中点∴厘米∵,厘米∴厘米∴又∵∴在和中∴(2)∵点的运动速度与点不同∴又∵,∴厘米,厘米∴点,点的运动时间为秒∴点的运动速度为厘米/秒∴当的运动速度为厘米时,与全等.【点睛】本题考查了等腰三角形的性质和全等三角形的判定和性质.涉及到了动点问题,题目较好但难度较大.22、(1)不成立,DE=AD-BE,理由见解析;(2)DE=BE-AD【分析】(1)DE、AD、BE之间的数量关系是DE=AD-BE.由垂直的性质可得到∠CAD=∠BCE,证得△ACD≌△CBE,得到AD=CE,CD=BE,即有DE=AD-BE;

(2)DE、AD、BE之间的关系是DE=BE-AD.证明的方法与(1)一样.【详解】(1)不成立.

DE、AD、BE之间的数量关系是DE=AD-BE,理由如下:如图,

∵∠ACB=90°,BE⊥CE,AD⊥CE,,

∴∠ACD+∠CAD=90°,

又∠ACD+∠BCE=90°,

∴∠CAD=∠BCE,

在△ACD和△CBE中,,

∴△ACD≌△CBE(AAS),

∴AD=CE,CD=BE,

∴DE=CE-CD=AD-BE;(2)结论:DE=BE-AD.

∵∠ACB=90°,BE⊥CE,AD⊥CE,,

∴∠ACD+∠CAD=90°,

又∠ACD+∠BCE=90°,

∴∠CAD=∠BCE,

在△ACD和△CBE中,,∴△ADC≌△CEB(AAS),

∴AD=CE,DC=BE,

∴DE=CD-CE=BE-AD.【点睛】本题考查了旋转的性质、直角三角形全等的判定与性质,旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.23、见解析【分析】(1)根据题意,描出O、A、B、C各点,连线即得四边形,然后作出各个点的关于轴对称的点,连线即得;(2)分别作BC、AC的垂直平分线,相交于点P,连接构成、、即得答案.【详解】(1)由题意,描出O、A、B、C各点,连线即得四边形,作出其关于轴对称的四边形,作图如下:(2)分别作BC、AC的垂直平分线,相交于点P,连接构成三角形,则点P即为所求作的点.【点睛】考查了数轴描点,会作点的关于直线的对称点,全等三角形的判定以及等腰三角形的判定,熟记几何图形的判定和性质是解题关键.24、见解析【分析】在△ABD中根据勾股定理的逆定理得到∠ADB=90°,从而得到AD是BC的垂直平分线,根据垂直平分线上的点到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论