版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省温州市苍南县2025年初三五月调研测试数学试题试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD的面积为()
A.30 B.27 C.14 D.322.以下各图中,能确定的是()A. B. C. D.3.如图是由6个完全相同的小长方体组成的立体图形,这个立体图形的左视图是()A. B.C. D.4.如图,AB∥CD,点E在CA的延长线上.若∠BAE=40°,则∠ACD的大小为()A.150° B.140° C.130° D.120°5.如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,那么该几何体的主视图是()A. B. C. D.6.长度单位1纳米=10A.25.1×10-6米B.C.2.51×105米D.7.已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是()A.y=(x+2)2+3B.y=(x﹣2)2+3C.y=x2+1D.y=x2+58.下列运算正确的是()A.3a2﹣2a2=1 B.a2•a3=a6 C.(a﹣b)2=a2﹣b2 D.(a+b)2=a2+2ab+b29.如图所示是放置在正方形网格中的一个,则的值为()A. B. C. D.10.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.13911.的倒数是()A.﹣ B.2 C.﹣2 D.12.一次函数满足,且y随x的增大而减小,则此函数的图像一定不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为_______.14.分解因式:________.15.已知:a(a+2)=1,则a2+=_____.16.甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同,已知甲平均每分钟比乙少打20个字,如果设甲平均每分钟打字的个数为x,那么符合题意的方程为:______.17.如图,点A在反比例函数y=(x>0)的图像上,过点A作AD⊥y轴于点D,延长AD至点C,使CD=2AD,过点A作AB⊥x轴于点B,连结BC交y轴于点E,若△ABC的面积为6,则k的值为________.18.如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=,求⊙O的半径.20.(6分)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)21.(6分)如图,在Rt△ABC中,∠C=90°,AC=AB.求证:∠B=30°.请填空完成下列证明.证明:如图,作Rt△ABC的斜边上的中线CD,则CD=AB=AD().∵AC=AB,∴AC=CD=AD即△ACD是等边三角形.∴∠A=°.∴∠B=90°﹣∠A=30°.22.(8分)先化简,再求值:,其中.23.(8分)如图,AD是△ABC的中线,过点C作直线CF∥AD.(问题)如图①,过点D作直线DG∥AB交直线CF于点E,连结AE,求证:AB=DE.(探究)如图②,在线段AD上任取一点P,过点P作直线PG∥AB交直线CF于点E,连结AE、BP,探究四边形ABPE是哪类特殊四边形并加以证明.(应用)在探究的条件下,设PE交AC于点M.若点P是AD的中点,且△APM的面积为1,直接写出四边形ABPE的面积.24.(10分)(1)计算:(2)化简:25.(10分)已知函数y=(x>0)的图象与一次函数y=ax﹣2(a≠0)的图象交于点A(3,n).(1)求实数a的值;(2)设一次函数y=ax﹣2(a≠0)的图象与y轴交于点B,若点C在y轴上,且S△ABC=2S△AOB,求点C的坐标.26.(12分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.求证:DE是⊙O的切线;若DE=3,CE=2.①求的值;②若点G为AE上一点,求OG+EG最小值.27.(12分)“C919”大型客机首飞成功,激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB∥CD,AM∥BN∥ED,AE⊥DE,请根据图中数据,求出线段BE和CD的长.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,结果保留小数点后一位)
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四边形ABFD=S△AED-S△BEF=25-4=21,∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,故选A.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.2、C【解析】
逐一对选项进行分析即可得出答案.【详解】A中,利用三角形外角的性质可知,故该选项错误;B中,不能确定的大小关系,故该选项错误;C中,因为同弧所对的圆周角相等,所以,故该选项正确;D中,两直线不平行,所以,故该选项错误.故选:C.本题主要考查平行线的性质及圆周角定理的推论,掌握圆周角定理的推论是解题的关键.3、B【解析】
根据题意找到从左面看得到的平面图形即可.【详解】这个立体图形的左视图是,
故选:B.本题考查了简单组合体的三视图,解题的关键是掌握左视图所看的位置.4、B【解析】试题分析:如图,延长DC到F,则∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故选B.考点:1.平行线的性质;2.平角性质.5、C【解析】A、B、D不是该几何体的视图,C是主视图,故选C.【点睛】主视图是由前面看到的图形,俯视图是由上面看到的图形,左视图是由左面看到的图形,能看到的线画实线,看不到的线画虚线.6、D【解析】先将25100用科学记数法表示为2.51×104,再和10-9相乘,等于2.51×10-5米.故选D7、A【解析】
结合向左平移的法则,即可得到答案.【详解】解:将抛物线y=x2+3向左平移2个单位可得y=(x+2)2+3,故选A.此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答.8、D【解析】
根据合并同类项法则,可知3a2﹣2a2=a2,故不正确;根据同底数幂相乘,可知a2•a3=a5,故不正确;根据完全平方公式,可知(a﹣b)2=a2﹣2ab+b2,故不正确;根据完全平方公式,可知(a+b)2=a2+2ab+b2,正确.故选D.【详解】请在此输入详解!9、D【解析】
首先过点A向CB引垂线,与CB交于D,表示出BD、AD的长,根据正切的计算公式可算出答案.【详解】解:过点A向CB引垂线,与CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=故选:D.此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.10、B【解析】
由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,…26,由此可得a,b.【详解】∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=1.∵上边的数与左边的数的和正好等于右边的数,∴a=11+1=2.故选B.本题考查了数字变化规律,观察出上边的数与左边的数的和正好等于右边的数是解题的关键.11、B【解析】
根据乘积是1的两个数叫做互为倒数解答.【详解】解:∵×1=1∴的倒数是1.故选B.本题考查了倒数的定义,是基础题,熟记概念是解题的关键.12、C【解析】
y随x的增大而减小,可得一次函数y=kx+b单调递减,k<0,又满足kb<0,可得b>0,由此即可得出答案.【详解】∵y随x的增大而减小,∴一次函数y=kx+b单调递减,∴k<0,∵kb<0,∴b>0,∴直线经过第二、一、四象限,不经过第三象限,故选C.本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b(k≠0,k、b是常数)的图象和性质是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、(3,2).【解析】
过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.【详解】过点P作PD⊥x轴于点D,连接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中∵OP=OD=3,∴PD=2∴P(3,2).故答案为(3,2).本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.14、(a+1)(a-1)【解析】
根据平方差公式分解即可.【详解】(a+1)(a-1).故答案为:(a+1)(a-1).本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.15、3【解析】
先根据a(a+2)=1得出a2=1-2a,再把a2=1-2a代入a2+进行计算.【详解】a(a+2)=1得出a2=1-2a,a2+1-2a+====3.本题考查的是代数式求解,熟练掌握代入法是解题的关键.16、【解析】
设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据工作时间=工作总量÷工作效率结合甲打135个字所用时间与乙打180个字所用时间相同,即可得出关于x的分式方程.【详解】∵甲平均每分钟打x个字,
∴乙平均每分钟打(x+20)个字,
根据题意得:,
故答案为.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.17、1【解析】
连结BD,利用三角形面积公式得到S△ADB=S△ABC=2,则S矩形OBAD=2S△ADB=1,于是可根据反比例函数的比例系数k的几何意义得到k的值.【详解】连结BD,如图,∵DC=2AD,∴S△ADB=S△BDC=S△BAC=×6=2,∵AD⊥y轴于点D,AB⊥x轴,∴四边形OBAD为矩形,∴S矩形OBAD=2S△ADB=2×2=1,∴k=1.故答案为:1.本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.18、【解析】分析:首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.详解:∵AB=4,BC=3,∴AC=BD=5,转动一次A的路线长是:转动第二次的路线长是:转动第三次的路线长是:转动第四次的路线长是:0,以此类推,每四次循环,故顶点A转动四次经过的路线长为:∵2017÷4=504…1,∴顶点A转动四次经过的路线长为:故答案为点睛:考查旋转的性质和弧长公式,熟记弧长公式是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)见解析;(2).【解析】分析:(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;(2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC=,得到DF=2,根据勾股定理得到AD==2,求得AE=,设⊙O的半径为R,则OE=R﹣,OA=R,根据勾股定理列方程即可得到结论.详解:(1)连结OP、OA,OP交AD于E,如图,∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,∴直线AB与⊙O相切;(2)连结BD,交AC于点F,如图,∵四边形ABCD为菱形,∴DB与AC互相垂直平分.∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,∴DF=2,∴AD==2,∴AE=.在Rt△PAE中,tan∠1==,∴PE=.设⊙O的半径为R,则OE=R﹣,OA=R.在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,∴R=,即⊙O的半径为.点睛:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的性质和锐角三角函数以及勾股定理.20、(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元.【解析】
(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元可列方程18x+12(20﹣x)=300,解方程即可;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价﹣成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.【详解】(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据题意得:18x+12(20﹣x)=300,解得:x=10,则20﹣x=20﹣10=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据题意得:13y+8.8(20﹣y)≤239,解得:y≤15,根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,当y=15时,W最大,最大值为91万元.所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元.考点:一元一次方程的应用;一元一次不等式的应用;一次函数的应用.21、直角三角形斜边上的中线等于斜边的一半;1.【解析】
根据直角三角形斜边上的中线等于斜边的一半和等边三角形的判定与性质填空即可.【详解】证明:如图,作Rt△ABC的斜边上的中线CD,则CD=AB=AD(直角三角形斜边上的中线等于斜边的一半),∵AC=AB,∴AC=CD=AD即△ACD是等边三角形,∴∠A=1°,∴∠B=90°﹣∠A=30°.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等边三角形的判定与性质,重点在于逻辑思维能力的训练.22、-1,-9.【解析】
先去括号,再合并同类项;最后把x=-2代入即可.【详解】原式=,当x=-2时,原式=-8-1=-9.本题考查了整式的混合运算及化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.23、【问题】:详见解析;【探究】:四边形ABPE是平行四边形,理由详见解析;【应用】:8.【解析】
(1)先根据平行线的性质和等量代换得出∠1=∠3,再利用中线性质得到BD=DC,证明△ABD≌△EDC,从而证明AB=DE(2)方法一:过点D作DN∥PE交直线CF于点N,由平行线性质得出四边形PDNE是平行四边形,从而得到四边形ABPE是平行四边形.方法二:延长BP交直线CF于点N,根据平行线的性质结合等量代换证明△ABP≌△EPN,从而证明四边形ABPE是平行四边形(3)延长BP交CF于H,根据平行四边形的性质结合三角形的面积公式求解即可.【详解】证明:如图①是的中线,(或证明四边形ABDE是平行四边形,从而得到)【探究】四边形ABPE是平行四边形.方法一:如图②,证明:过点D作交直线于点,∴四边形是平行四边形,∵由问题结论可得∴四边形是平行四边形.方法二:如图③,证明:延长BP交直线CF于点N,∵是的中线,∴四边形是平行四边形.【应用】如图④,延长BP交CF于H.由上面可知,四边形是平行四边形,∴四边形APHE是平行四边形,,此题重点考查学生对平行线性质,平行四边形性质的综合应用能力,熟练掌握平行线的性质是解题的关键.24、(1);(2)-1;【解析】
(1)根据负整数指数幂、特殊角的三角函数、零指数幂可以解答本题;(2)根据分式的除法和减法可以解答本题.【详解】(1)==2-.(2)=====-1本题考查分式的混合运算、负整数指数幂、特殊角的三角函数、零指数幂,解答本题的关键是明确它们各自的计算方法.25、(1)a=1;(2)C(0,﹣4)或(0,0).【解析】
(1)把A(3,n)代入y=(x>0)求得n的值,即可得A点坐标,再把A点坐标代入一次函数y=ax﹣2可得a的值;(2)先求出一次函数y=ax﹣2(a≠0)的图象与y轴交点B的坐标,再分两种情况(①当C点在y轴的正半轴上或原点时;②当C点在y轴的负半轴上时)求点C的坐标即可.【详解】(1)∵函数y=(x>0)的图象过(3,n),∴3n=3,n=1,∴A(3,1)∵一次函数y=ax﹣2(a≠0)的图象过点A(3,1),∴1=3a﹣1,解得a=1;(2)∵一次函数y=ax﹣2(a≠0)的图象与y轴交于点B,∴B(0,﹣2),①当C点在y轴的正半轴上或原点时,设C(0,m),∵S△ABC=2S△AOB,∴×(m+2)×3=2××3,解得:m=0,②当C点在y轴的负半轴上时,设(0,h),∵S△ABC=2S△AOB,∴×(﹣2﹣h)×3=2××3,解得:h=﹣4,∴C(0,﹣4)或(0,0).本题主要考查了一次函数与反比例函数交点问题,解决第(2)问时要注意分类讨论,不要漏解.26、(1)证明见解析(2)①②3【解析】
(1)作辅助线,连接OE.根据切线的判定定理,只需证DE⊥OE即可;(2)①连接BE.根据BC、DE两切线的性质证明△ADE∽△BEC;又由角平分线的性质、等腰三角形的两个底角相等求得△ABE∽△AFD,所以;②连接OF,交AD于H,由①得∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,故四边形AOEF是菱形,由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=EG,OG+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年特殊病房项目资金筹措计划书代可行性研究报告
- 工程力学(下)电子教案第九章
- 2023-2024学年广东省深圳市宝安区八年级(上)期末英语试卷
- 上海市县(2024年-2025年小学五年级语文)人教版小升初模拟(下学期)试卷及答案
- A版二年级下册语文教案(全册)及教学计划
- 空调机组及新风机组技术规格书
- 废弃物资源化利用行业相关项目经营管理报告
- 医用踝部支具产业规划专项研究报告
- 乙烯基塑料制餐具垫产业深度调研及未来发展现状趋势
- 农业起卸机产业深度调研及未来发展现状趋势
- 2024年医院食堂承包合同参考模板(五篇)
- 江苏省南京市六校2024-2025学年高一上学期期中联合调研考试 数学 含答案
- 国开学习网《幼儿园课程与活动设计》期末大作业答案(第7套)
- 第25课《刘姥姥进大观园》(导学案)(学生版) 2024-2025学年九年级语文上册同步课堂(统编版)(学生专用)
- 美容院翻新合同协议书
- 嵌入式课程设计实训
- 第三单元综合卷-2024-2025学年统编版语文五年级上册
- 土方开挖和回填专项施工方案
- 政府采购评审专家考试题及答案
- 信息系统密码应用建设方案
- 中型直升机交易协议(2024年)版
评论
0/150
提交评论