版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
苏省南京市联合体2025届下学期初三期末模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.如图,已知AB∥CD,DE⊥AF,垂足为E,若∠CAB=50°,则∠D的度数为()A.30° B.40° C.50° D.60°2.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是A.B.C.D.3.下表是某校合唱团成员的年龄分布.年龄/岁13141516频数515x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.众数、中位数 B.平均数、中位数 C.平均数、方差 D.中位数、方差4.下列实数0,,,π,其中,无理数共有()A.1个 B.2个 C.3个 D.4个5.如图,、是的切线,点在上运动,且不与,重合,是直径.,当时,的度数是()A. B. C. D.6.实数的倒数是()A. B. C. D.7.对于不等式组,下列说法正确的是()A.此不等式组的正整数解为1,2,3B.此不等式组的解集为C.此不等式组有5个整数解D.此不等式组无解8.计算(﹣ab2)3的结果是()A.﹣3ab2 B.a3b6 C.﹣a3b5 D.﹣a3b69.若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为()A.15πcm2 B.24πcm2 C.39πcm2 D.48πcm210.如图,四边形ABCD内接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,则∠BDC的度数为()A.100° B.105° C.110° D.115°二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为_____.12.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是.13.因式分解:x3﹣4x=_____.14.方程的解为__________.15.已知ba=216.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…、6点的标记,掷一次骰子,向上的一面出现的点数是素数的概率是_____.三、解答题(共8题,共72分)17.(8分)先化简,然后从-2≤x≤2的范围内选取一个合适的整数作为x的值代入求值.18.(8分)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.19.(8分)计算:sin30°•tan60°+..20.(8分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.21.(8分)观察猜想:在Rt△ABC中,∠BAC=90°,AB=AC,点D在边BC上,连接AD,把△ABD绕点A逆时针旋转90°,点D落在点E处,如图①所示,则线段CE和线段BD的数量关系是,位置关系是.探究证明:在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.拓展延伸:如图③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他条件不变,过点D作DF⊥AD交CE于点F,请直接写出线段CF长度的最大值.22.(10分)经过江汉平原的沪蓉(上海﹣成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得∠ACB=68°.(1)求所测之处江的宽度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.1.);(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.(不用考虑计算问题,叙述清楚即可)23.(12分)抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.(1)求出m的值并画出这条抛物线;(2)求它与x轴的交点和抛物线顶点的坐标;(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x值的增大而减小?24.如图所示,在中,,(1)用尺规在边BC上求作一点P,使;(不写作法,保留作图痕迹)(2)连接AP当为多少度时,AP平分.
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】试题解析:∵AB∥CD,且∴在中,故选B.2、A。【解析】如图,∵根据三角形面积公式,当一边OA固定时,它边上的高最大时,三角形面积最大,∴当PO⊥AO,即PO为三角形OA边上的高时,△APO的面积y最大。此时,由AB=2,根据勾股定理,得弦AP=x=。∴当x=时,△APO的面积y最大,最大面积为y=。从而可排除B,D选项。又∵当AP=x=1时,△APO为等边三角形,它的面积y=,∴此时,点(1,)应在y=的一半上方,从而可排除C选项。故选A。3、A【解析】
由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【详解】由题中表格可知,年龄为15岁与年龄为16岁的频数和为,则总人数为,故该组数据的众数为14岁,中位数为(岁),所以对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选A.本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.4、B【解析】
根据无理数的概念可判断出无理数的个数.【详解】解:无理数有:,.故选B.本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.5、B【解析】
连接OB,由切线的性质可得,由邻补角相等和四边形的内角和可得,再由圆周角定理求得,然后由平行线的性质即可求得.【详解】解,连结OB,∵、是的切线,∴,,则,∵四边形APBO的内角和为360°,即,∴,又∵,,∴,∵,∴,∵,∴,故选:B.本题主要考查了切线的性质、圆周角定理、平行线的性质和四边形的内角和,解题的关键是灵活运用有关定理和性质来分析解答.6、D【解析】因为=,所以的倒数是.故选D.7、A【解析】解:,解①得x≤,解②得x>﹣1,所以不等式组的解集为﹣1<x≤,所以不等式组的整数解为1,2,1.故选A.点睛:本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.8、D【解析】
根据积的乘方与幂的乘方计算可得.【详解】解:(﹣ab2)3=﹣a3b6,故选D.本题主要考查幂的乘方与积的乘方,解题的关键是掌握积的乘方与幂的乘方的运算法则.9、B【解析】试题分析:底面积是:9πcm1,底面周长是6πcm,则侧面积是:×6π×5=15πcm1.则这个圆锥的全面积为:9π+15π=14πcm1.故选B.考点:圆锥的计算.10、B【解析】
根据圆内接四边形的性质得出∠C的度数,进而利用平行线的性质得出∠ABC的度数,利用角平分线的定义和三角形内角和解答即可.【详解】∵四边形ABCD内接于⊙O,∠A=130°,
∴∠C=180°-130°=50°,
∵AD∥BC,
∴∠ABC=180°-∠A=50°,
∵BD平分∠ABC,
∴∠DBC=25°,
∴∠BDC=180°-25°-50°=105°,
故选:B.本题考查了圆内接四边形的性质,关键是根据圆内接四边形的性质得出∠C的度数.二、填空题(本大题共6个小题,每小题3分,共18分)11、﹣1.【解析】试题分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P,Q面积相等.连接AB,OD,根据两半圆的直径相等可知∠AOD=∠BOD=45°,故可得出绿色部分的面积=S△AOD,利用阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色,故可得出结论.解:∵扇形OAB的圆心角为90°,扇形半径为2,∴扇形面积为:=π(cm2),半圆面积为:×π×12=(cm2),∴SQ+SM=SM+SP=(cm2),∴SQ=SP,连接AB,OD,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S绿色=S△AOD=×2×1=1(cm2),∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣﹣1=﹣1(cm2).故答案为﹣1.考点:扇形面积的计算.12、【解析】试题分析:这四个数中,奇数为1和3,则P(抽出的数字是奇数)=2÷4=.考点:概率的计算.13、x(x+2)(x﹣2)【解析】试题分析:首先提取公因式x,进而利用平方差公式分解因式.即x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).考点:提公因式法与公式法的综合运用.14、【解析】
两边同时乘,得到整式方程,解整式方程后进行检验即可.【详解】解:两边同时乘,得,解得,检验:当时,≠0,所以x=1是原分式方程的根,故答案为:x=1.本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.15、3【解析】
依据ba=23可设a=3k,b=2【详解】∵ba∴可设a=3k,b=2k,∴aa-b故答案为3.本题主要考查了比例的性质及见比设参的数学思想,组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.16、【解析】
先判断掷一次骰子,向上的一面的点数为素数的情况,再利用概率公式求解即可.【详解】解:∵掷一次这枚骰子,向上的一面的点数为素数的有2,3,5共3种情况,∴掷一次这枚骰子,向上的一面的点数为素数的概率是:.故答案为:.本题考查了求简单事件的概率,根据题意判断出素数的个数是解题的关键.三、解答题(共8题,共72分)17、,当x=0时,原式=(或:当x=-1时,原式=).【解析】
先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【详解】解:原式=×=.x满足﹣1≤x≤1且为整数,若使分式有意义,x只能取0,﹣1.当x=0时,原式=﹣(或:当x=﹣1时,原式=).本题考查分式的化简求值,化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.18、两人之中至少有一人直行的概率为.【解析】【分析】画树状图展示所有9种等可能的结果数,找出“至少有一人直行”的结果数,然后根据概率公式求解.【详解】画树状图为:共有9种等可能的结果数,其中两人之中至少有一人直行的结果数为5,所以两人之中至少有一人直行的概率为.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.概率=所求情况数与总情况数之比.19、【解析】试题分析:把相关的特殊三角形函数值代入进行计算即可.试题解析:原式=.20、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;【解析】
(1)根据题意,本次接受调查的学生总人数为各个金额人数之和,用总概率减去其他金额的概率即可求得m值.(2)平均数为一组数据中所有数据之和再除以这组数据的个数;众数是在一组数据中出现次数最多的数;中位数是将一组数据按大小顺序排列,处于最中间位置的一个数据,或是最中间两个数据的平均数,据此求解即可.(3)根据样本估计总体,用“每天在校体育锻炼时间大于等于1.5h的人数”的概率乘以全校总人数求解即可.【详解】(1)本次接受随机抽样调查的中学生人数为60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.本题主要考查数据的收集、处理以及统计图表.21、(1)CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由见解析;(3).【解析】分析:(1)线段AD绕点A逆时针旋转90°得到AE,根据旋转的性质得到AD=AE,∠BAD=∠CAE,得到△BAD≌△CAE,CE=BD,∠ACE=∠B,得到∠BCE=∠BCA+∠ACE=90°,于是有CE=BD,CE⊥BD.(2)证明的方法与(1)类似.(3)过A作AM⊥BC于M,EN⊥AM于N,根据旋转的性质得到∠DAE=90°,AD=AE,利用等角的余角相等得到∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,则NE=MA,由于∠ACB=45°,则AM=MC,所以MC=NE,易得四边形MCEN为矩形,得到∠DCF=90°,由此得到Rt△AMD∽Rt△DCF,得,设DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函数即可求得CF的最大值.详解:(1)①∵AB=AC,∠BAC=90°,∴线段AD绕点A逆时针旋转90°得到AE,∴AD=AE,∠BAD=∠CAE,∴△BAD≌△CAE,∴CE=BD,∠ACE=∠B,∴∠BCE=∠BCA+∠ACE=90°,∴BD⊥CE;故答案为CE=BD,CE⊥BD.(2)(1)中的结论仍然成立.理由如下:如图,∵线段AD绕点A逆时针旋转90°得到AE,∴AE=AD,∠DAE=90°,∵AB=AC,∠BAC=90°∴∠CAE=∠BAD,∴△ACE≌△ABD,∴CE=BD,∠ACE=∠B,∴∠BCE=90°,即CE⊥BD,∴线段CE,BD之间的位置关系和数量关系分别为:CE=BD,CE⊥BD.(3)如图3,过A作AM⊥BC于M,EN⊥AM于N,∵线段AD绕点A逆时针旋转90°得到AE∴∠DAE=90°,AD=AE,∴∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,∴NE=AM,∵∠ACB=45°,∴△AMC为等腰直角三角形,∴AM=MC,∴MC=NE,∵AM⊥BC,EN⊥AM,∴NE∥MC,∴四边形MCEN为平行四边形,∵∠AMC=90°,∴四边形MCEN为矩形,∴∠DCF=90°,∴Rt△AMD∽Rt△DCF,∴,设DC=x,∵∠ACB=45°,AC=,∴AM=CM=1,MD=1-x,∴,∴CF=-x2+x=-(x-)2+,∴当x=时有最大值,CF最大值为.点睛:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等腰直角三角形的性质和三角形全等及相似的判定与性质.22、(1)21米(2)见解析【解析】试题分析:(1)根据题意易发现,直角三角形ABC中,已知AC的长度,又知道了∠ACB的度数,那么AB的长就不难求出了.(2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的.解:(1)在Rt△BAC中,∠ACB=68°,∴AB=AC•tan68°≈100×2.1=21(米)答:所测之处江
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绿城育华学校九年级上学期语文12月检测试卷
- 广水市九年级上学期语文期中考试试卷
- 八年级上学期语文9月月考试卷
- 高支模验收申请1
- 窗花剪纸课件教学课件
- 置业类合同(2篇)
- 《数学物理方法》 测试题及答案汇 黄志祥 第1-8章
- 辩论英文课件教学课件
- 济南的冬天说课稿14篇
- 南京航空航天大学《博弈与社会》2022-2023学年第一学期期末试卷
- 电力工程施工安全管理规程
- 【课件】 2024消防月主题培训:全民消防 生命至上
- 2024年江苏常州市科维集团招聘笔试参考题库含答案解析
- (完整版)小学生心理健康教育课件
- 铁路基本建设工程设计概(预)算编制办法-国铁科法(2017)30号
- 幼儿园大班《风筝飞上天》教案
- 寄宿生防火、防盗、人身防护安全知识
- 弯管力矩计算公式
- 《Excel数据分析》教案
- 汽车低压电线束技术条件
- 水稻常见病虫害ppt
评论
0/150
提交评论