版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届浙江省湖州市吴兴区十校联考八年级数学第一学期期末综合测试试题综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列各组数据分别是三角形的三边长,其中不能构成直角三角形的是()A. B.C. D.2.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A. B. C. D.3.某班级的一次数学考试成绩统计图如图,则下列说法错误的是()A.得分在70~80分的人数最多 B.该班的总人数为40C.人数最少的得分段的频数为2 D.得分及格(≥60分)的有12人4.下列各组数据中的三个数作为三角形的边长,其中不能构成直角三角形的是()A.3,4,5 B.,, C.8,15,17 D.5,12,135.若有意义,则x的取值范围是().A.x>﹣1 B.x≥0 C.x≥﹣1 D.任意实数6.如图,圆的直径为1个单位长度,圆上的点A与数轴上表示-1的点重合,将该圆沿数轴滚动一周,点A到达的位置,则点表示的数是()A. B. C. D.7.若等腰三角形的周长为,其中一边为,则该等腰三角形的底边长为()A. B.或 C.或 D.8.选择计算(﹣4xy2+3x2y)(4xy2+3x2y)的最佳方法是()A.运用多项式乘多项式法则 B.运用平方差公式C.运用单项式乘多项式法则 D.运用完全平方公式9.以下列各组数为边长,能构成直角三角形的是()A.1,2,3 B.4,5,6 C.,, D.32,42,5210.如图,在3×3的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()A.A点 B.B点 C.C点 D.D点二、填空题(每小题3分,共24分)11.已知,则__________.12.如果正多边形的一个外角为45°,那么它的边数是_________.13.若关于的方程有增根,则k的值为____________.14.如图,△ABC的两条高BD、CE相交于点O且OB=OC.则下列结论:①△BEC≌△CDB;②△ABC是等腰三角形;③AE=AD;④点O在∠BAC的平分线上,其中正确的有_____.(填序号)15.已知,且,,,…,,请计算__________(用含在代数式表示).16.平行四边形中,,,则的取值范围是________.17.的立方根是___________.18.如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为______.三、解答题(共66分)19.(10分)如图,图中数字代表正方形的面积,,求正方形的面积.(提示:直角三角形中,角所对的直角边等于斜边的一半)20.(6分)平面直角坐标系中,三个顶点的坐标为.(1)直接写出关于轴对称的点的坐标:;;;(2)若各顶点的横坐标不变,纵坐标都乘以,请直接写出对应点,,的坐标,并在坐标系中画出.21.(6分)如图,已知中,,点D在边AB上,满足,(1)求证:;(2)若,且的面积为,试求边AB的长度.22.(8分)从沈阳到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是千米,普通列车的行驶路程是高铁的行驶路程的倍.(1)求普通列车的行驶路程.(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短小时,求高铁的平均速度.23.(8分)如图,在△ABC中,∠A=30°,∠B=60°(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.24.(8分)物华小区停车场去年收费标准如下:中型汽车的停车费为600元/辆,小型汽车的停车费为400元/辆,停满车辆时能收停车费23000元,今年收费标准上调为:中型汽车的停车费为1000元/辆,小型汽车的停车费为600元/辆,若该小区停车场容纳的车辆数没有变化,今年比去年多收取停车费13000元.(1)该停车场去年能停中、小型汽车各多少辆?(2)今年该小区因建筑需要缩小了停车场的面积,停车总数减少了11辆,设该停车场今年能停中型汽车辆,小型汽车有辆,停车场收取的总停车费为元,请求出关于的函数表达式;(3)在(2)的条件下,若今年该停车场停满车辆时小型汽车的数量不超过中型汽车的2倍,则今年该停车场最少能收取的停车费共多少元?25.(10分)如图,,点、分别在边、上,且,请问吗?为什么?26.(10分)如图,已知.(1)按以下步骤把图形补充完整:的平分线和边的垂直平分线相交于点,过点作线段垂直于交的延长线于点;(2)求证:所画的图形中.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【详解】解:A、∵52+122=169=132,∴能构成直角三角形,故本选项错误;B、∵12+12=2=()2,∴能构成直角三角形,故本选项错误;C、∵12+22=5=()2,∴能够构成直角三角形,故本选项错误;D、∵()2+22=7≠()2,∴不能构成直角三角形,故本选项正确.故选D.【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.2、A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:=,故选A.3、D【解析】试题分析:A、得分在70~80分之间的人数最多,有14人,此选项正确;B、该班的总人数为4+12+14+8+2=40人,此选项正确;C、得分在90~100分之间的人数最少,有2人,频数为2,此选项正确;D、及格(≥60分)人数是12+14+8+2=36人,此选项错误.故选D.点睛:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.4、B【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:、,能构成直角三角形;、,不能构成直角三角形;、,能构成直角三角形;、,能构成直角三角形.故选:.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5、C【分析】根据二次根式的意义可得出x+1≥0,即可得到结果.【详解】解:由题意得:x+1≥0,解得:x≥﹣1,故选:C.【点睛】本题主要是考查了二次根式有意义的条件应用,计算得出的不等式是关键.6、D【解析】先求出圆的周长,再根据数轴的特点进行解答即可.【详解】∵圆的直径为1个单位长度,∴此圆的周长=π,∴当圆向左滚动时点A′表示的数是-π-1;当圆向右滚动时点A′表示的数是π-1.故选:D.【点睛】本题考查的是实数与数轴的特点,熟知实数与数轴上的点是一一对应关系是解答此题的关键.7、C【分析】分底为7cm和腰为7cm两种情况进行讨论,再根据三角形的三边关系进行验证.【详解】分两种情况讨论:①当底为7cm时,此时腰长为4cm和4cm,满足三角形的三边关系;②当腰为7cm时,此时另一腰为7cm,则底为1cm,满足三角形的三边关系;综上所述:底边长为1cm或7cm.故选:C.【点睛】本题考查了等腰三角形的性质及三角形的三边关系,分两种情况讨论是解答本题的关键.8、B【解析】直接利用平方差公式计算得出答案.【详解】选择计算(﹣4xy2+3x2y)(4xy2+3x2y)的最佳方法是:运用平方差公式.故选:B.【点睛】此题主要考查了多项式乘法,正确应用公式是解题关键.9、C【解析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【详解】解:A、∵12+22≠32,∴该三角形不是直角三角形,故此选项不符合题意;B、∵42+52≠62,∴该三角形不是直角三角形,故此选项不符合题意;C、∵∴该三角形是直角三角形,故此选项符合题意;D、∵(32)2+(42)2≠(52)2,∴该三角形不是直角三角形,故此选项不符合题意.故选C.【点睛】考查勾股定理的逆定理,:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形.10、B【解析】试题解析:当以点B为原点时,A(-1,-1),C(1,-1),则点A和点C关于y轴对称,符合条件,故选B.【点睛】本题考查的是关于x轴、y轴对称的点的坐标和坐标确定位置,掌握平面直角坐标系内点的坐标的确定方法和对称的性质是解题的关键.二、填空题(每小题3分,共24分)11、-.【分析】,把a+b=-3ab代入分式,化简求值即可.【详解】解:,
把a+b=-3ab代入分式,得
=
=
=
=-.
故答案为:-.【点睛】此题考查分式的值,掌握整体代入法进行化简是解题的关键.12、8【详解】正多边形的一个外角为45°,那么它的边数是故答案为13、9【分析】根据题意先将分式方程化为整式方程,再将增根代入求得k的值即可.【详解】解:方程两边同乘以,去分母得,将增根代入得,解得.故答案为:9.【点睛】本题考查分式方程的增根,根据题意把分式方程的增根代入整式方程是解题的关键.14、①②③④【分析】由三角形内角和定理可得∠ABC=∠ACB,可得AB=AC;由AAS可证△BEC≌△CDB;可得BE=CD,可得AD=AE;通过证明△AOB≌△AOC,可证点O在∠BAC的平分线上.即可求解.【详解】解:∵OB=OC,∴∠OBC=∠OCB,∵锐角△ABC的两条高BD、CE相交于点O,∴∠BEC=∠CDB=90°,∵∠BEC+∠BCE+∠ABC=∠CDB+∠DBC+∠ACB=180°,∴180°﹣∠BEC﹣∠BCE=180°﹣∠CDB﹣∠CBD,∴∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形,故②符合题意;∵∠OBC=∠OCB,∠BDC=∠BEC=90°,且BC=BC,∴△BEC≌△CDB(AAS),故①符合题意,∴BE=CD,且AB=AC,∴AD=AE,故③符合题意;连接AO并延长交BC于F,在△AOB和△AOC中,∴△AOB≌△AOC(SSS).∴∠BAF=∠CAF,∴点O在∠BAC的角平分线上,故④符合题意,故正确的答案为:①②③④.【点睛】本题考查了全等三角形的判定和性质、等腰三角形的判定和性质,解题的关键是:灵活运用全等三角形的判定和性质.15、【分析】首先将代入,用表示出,以此类推,进一步表示出、,最后根据计算结果得出循环规律,据此进一步求解即可.【详解】∵,∴,,,由此可得,是以、、依次循环,∵,∴,故答案为:.【点睛】本题主要考查了分式的运算,准确找出循环规律是解题关键.16、【分析】根据平行四边形的性质求出OA、OB,根据三角形的三边关系定理得到OA-OB<AB<OA+OB,代入求出即可.【详解】解析:四边形是平行四边形,,,,,在中,,,.即的取值范围为.故答案为:.【点睛】本题考查了对平行四边形的性质,三角形的三边关系定理等知识点的理解和掌握,求出OA、OB后得出OA-OB<AB<OA+OB是解此题的关键.17、1【分析】的值为8,根据立方根的定义即可求解.【详解】解:,8的立方根是1,故答案为:1.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.18、1【解析】本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC-60°=∠C-60°,最后根据三角形内角和定理得出关系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到结论.【详解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案为:1.【点睛】本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.三、解答题(共66分)19、1【分析】作AD⊥BC,交BC延长线于D,已知∠ACB=120°,可得∠ACD=60°,∠DAC=30°;即可求出AD,进而求出BD,由勾股定理AB2=AD2+BD2,即可求得AB2即为正方形P的面积.【详解】如图,作AD⊥BC,交BC延长线于D,∵∠ACB=120°,∴∠ACD=60°,∠DAC=30°;∴CD=AC=1,∴AD=,在Rt△ADB中,BD=BC+CD=3+1=4,AD=,根据勾股定理得:AB2=AD2+BD2=3+16=1;∴正方形P的面积=AB2=1.【点睛】本题考查了特殊角三角函数解直角三角形和利用勾股定理解直角三角形.20、(1)(2);图见解析.【分析】(1)根据点坐标关于y轴对称的规律即可得;(2)根据“横坐标不变,纵坐标都乘以”可得点坐标,再在平面直角坐标系中描出三点,然后顺次连接即可得.【详解】(1)在平面直角坐标系中,点坐标关于y轴对称的规律为:横坐标变为相反数,纵坐标不变故答案为:;;;(2)横坐标不变,纵坐标都乘以在平面直角坐标系中,先描出三点,再顺次连接即可得,结果如图所示:【点睛】本题考查了点坐标关于y轴对称的规律、在平面直角坐标系中画三角形,熟练掌握平面直角坐标系中,点的坐标变换规律是解题关键.21、(1)见解析;(2)【分析】(1)取边AB的中点E,连接CE,得到,再证明,得到,问题得证;(2)设AD=x,DB=5x,用含x式子表示出各线段长度,过点C作CH⊥AB,垂足为H.用含x式子表示出CH,根据△ABC的面积为,求出x,问题得解.【详解】解:(1)取边AB的中点E,连接CE.在中,∴,∴,∴,∵,∴,∴,∴,即.(2)由已知,设AD=x,DB=5x,∴,,∴,过点C作CH⊥AB,垂足为H.∵CD=CE,∴,在中,,∴,∴△ABC的面积为,由题意,∴,∴.【点睛】本题考查了直角三角形性质,等腰三角形性质与判定,熟知相关定理,添加辅助线构造等腰三角形是解题关键.22、(1)普通列车的行驶路程是千米;(2)高铁的平均速度是千米/时【分析】(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的1.3倍,两数相乘即可得出答案;
(2)设普通列车平均速度是千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可.【详解】(1)根据题意得:
400×1.3=520(千米),
答:普通列车的行驶路程是520千米;(2)设普通列车平均速度是千米/时,则高铁平均速度是千米/时,根据题意得:.解得,经检验是原方程的根,且符合题意,所以高铁的平均速度是(千米/时).答:高铁的平均速度是千米/时.【点睛】本题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.23、(1)作图见解析;(2)证明见解析.【分析】(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于FN长为半径画弧,两弧交于点M,过B、M作射线,交AC于D,线段BD就是∠B的平分线;②分别以A、B为圆心,大于AB长为半径画弧,两弧交于X、Y,过X、Y作直线与AB交于点E,点E就是AB的中点;(2)首先根据角平分线的性质可得∠ABD的度数,从而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,即可利用SAS证明△ADE≌△BDE.【详解】解:(1)作图如下:
(2)证明:∵∠ABD=×60°=30°,∠A=30°∴∠ABD=∠A.∴AD=BD又∵AE=BE,∴△ADE≌△BDE(SAS)24、(1)该停车场去年能停中型汽车15辆,小型汽车35辆;(2);(3)今年该停车场最少能收取停车费共28600元.【分析】(1)设该停车场去年能停中型汽车辆,小型汽车辆,根据等量关系,列出二元一次方程组,即可求解;(2)由题意得:,根据“总停车费=中型汽车停车费+小型汽车费”,即可得到关于的函数表达式;(3)根据题意,列出关于x的不等式,得到x的取值范围,再根据关于的函数表达式,即可求解.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (2024版)金融服务供应链管理合同
- 2(2024版)无人机研发及销售合同
- 2024年合作社房屋修缮借款合同
- 市政工程塑料检查井施工方案
- 社会领域活动方案设计
- 接单流程及话术培训
- 2024年西藏客运从业资格证考试试题和答案
- 济宁学院《编排设计》2021-2022学年第一学期期末试卷
- 福建省泉州市永春县华侨中学2024年高三5月联考数学试题测试试题
- 民爆物品安全环境保护制度
- 《跨境电商应用英语1》课程标准
- 幼儿园主题活动中家长资源的利用现状研究-毕业论文
- 匾额制作工艺
- 天堂旅行团读书分享
- 计算机毕业设计jsp咖啡馆管理系统论文
- 现在的窗帘行业分析
- 便利店实操手册课件
- 金融业就业课件
- 校园充电桩可行性方案
- 医院信息软件培训方案
- 学习总结探索知识的宝藏
评论
0/150
提交评论