版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北襄阳宜城市朱市镇第二中学数学八上期末学业质量监测试题监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若关于的方程的解是正数,则的取值范围是()A. B.且 C.且 D.且2.的值是()A.16 B.2 C. D.3.小明体重为48.96kg,这个数精确到十分位的近似值为()A.48kg B.48.9kg C.49kg D.49.0kg4.如图,边长为24的等边三角形ABC中,M是高CH所在直线上的一个动点,连结MB,将线段BM绕点B逆时针旋转60°得到BN,连结HN.则在点M运动过程中,线段HN长度的最小值是()A.12 B.6 C.3 D.15.的整数部分是,小数部分是,则的值是()A.7 B.1 C. D.106.如图,△ABC的外角∠ACD的平分线CP与∠ABC平分线BP交于点P,若∠BPC=40°,则∠CAP的度数是()A.30°; B.40°; C.50°; D.60°.7.如图,点P是∠AOB平分线I上一点,PD⊥OB,垂足为D,若PD=3,则点P到边OA的距离是()A. B.2 C.3 D.48.如图,两车从南北方向的路段的端出发,分别向东、向西行进相同的距离到达两地,若与的距离为千米,则与的距离为()A.千米 B.千米 C.千米 D.无法确定9.若(x+m)(x2-3x+n)的展开式中不含x2和x项,则m,n的值分别为()A.m=3,n=1 B.m=3,n=-9 C.m=3,n=9 D.m=-3,n=910.边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为()A. B. C. D.二、填空题(每小题3分,共24分)11.是方程组的解,则.12.已知点P(a,b)在一次函数y=2x﹣1的图象上,则4a﹣2b+1=_____.13.如图,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBA交AC于点D,DE⊥AB于E.若△ADE的周长为8cm,则AB=_____cm.14.如图,这是一个供滑板爱好者使用的型池的示意图,该型池可以看成是长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是直径为的半圆,其边缘,点在上,,一滑板爱好者从点滑到点,则他滑行的最短距离约为_________.(边缘部分的厚度忽略不计)15.如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BE⊥AD交的延长线于点F,垂足为点E,且BE=3,则AD=____.16.清代诗人袁枚的一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开”,若苔花的花粉直径约为0.0000084米,用科学记数法表示为______米.17.命题“三个角都相等的三角形是等边三个角”的题设是_____,结论是_____.18.在实数范围内分解因式=___________.三、解答题(共66分)19.(10分)如图1所示,在△ABC中,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,连接AM、AN.(1)求证:△AMN的周长=BC;(2)若AB=AC,∠BAC=120°,试判断△AMN的形状,并证明你的结论;(3)若∠C=45°,AC=3,BC=9,如图2所示,求MN的长.20.(6分)如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)21.(6分)如图,在中,点分别在边上,与交于点,已知;;求证:是等腰三角形.22.(8分)(1)用简便方法计算:20202﹣20192(2)化简:[(x﹣y)2+(x+y)(x﹣y)]÷2x23.(8分)(1)计算:(a﹣b)(a2+ab+b2)(2)利用所学知识以及(1)所得等式,化简代数式24.(8分)证明:如果两个三角形有两边和其中一边上的高分别对应相等,那么这两个三角形全等.25.(10分)如图,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE∥CF.(1)求证:DE=DF;(2)若在原有条件基础上再添加AB=AC,你还能得出什么结论.(不用证明)(写2个)26.(10分)先化简,后计算:,其中
参考答案一、选择题(每小题3分,共30分)1、C【分析】解分式方程,可得分式方程的解,根据分式方程的解是正数且分式方程有意义,可得不等式组,解不等式组,可得答案.【详解】,方程两边都乘以(x−2),得:2x+m=3x−6,解得:x=m+6,由分式方程的意义,得:m+6−2≠0,即:m≠−4,由关于x的方程的解是正数,得:m+6>0,解得:m>−6,∴m的取值范围是:m>−6且m≠−4,故选:C.【点睛】本题主要考查根据分式方程的解的情况,求参数的范围,掌握解分式方程,是解题的关键.2、B【分析】根据算术平方根的定义求值即可.【详解】=1.故选:B.【点睛】本题考查算术平方根,属于基础题型.3、D【分析】把百分位上的数字6进行四舍五入即可.【详解】解:48.96≈49.0(精确到十分位).
故选:D.【点睛】本题考查了近似数:近似数与精确数的接近程度,可以用精确度表示,精确到哪位,就是对它后边的一位进行四舍五入.4、B【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BD=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【详解】如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,当MG⊥CH时,MG最短,即HN最短,此时∠BCH=×60°=30°,CG=AB=×24=12,∴MG=CG=×12=6,∴HN=6,故选B.【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.5、B【分析】由的整数部分是,小数部分是,即可得出x、y的值,然后代入求值即可.【详解】解:∵,∴的整数部分,小数部分,∴.故选:B.【点睛】本题主要考查实数,关键是运用求一个平方根的整数部分和小数部分的方法得出未知数的值,然后代入求值即可.6、C【解析】过点P作PE⊥BD于点E,PF⊥BA于点F,PH⊥AC于点H,∵CP平分∠ACD,BP平分∠ABC,∴PE=PH,PE=PF,∠PCD=∠ACD,∠PBC=∠ABC,∴PH=PF,∴点P在∠CAF的角平分线上,∴AP平分∠FAC,∴∠CAP=∠CAF.∵∠PCD=∠BPC+∠PBC,∴∠ACD=2∠BPC+2∠PBC,又∵∠ACD=∠ABC+∠BAC,∠ABC=2∠PBC,∠BPC=40°,∴∠ABC+∠BAC=∠ABC+80°,∴∠BAC=80°,∴∠CAF=180°-80°=100°,∴∠CAP=100°×=50°.故选C.点睛:过点P向△ABC三边所在直线作出垂线段,这样综合应用“角平分线的性质与判定”及“三角形外角的性质”即可结合已知条件求得∠CAP的度数.7、C【分析】作PE⊥OA于E,根据角平分线的性质解答.【详解】作PE⊥OA于E,∵点P是∠AOB平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD=3,故选C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8、A【分析】先由条件证明,再根据全等三角形的性质即可得出结论.【详解】解:由题意得:AC=AD,,∴在和中∴∴∴与的距离为千米故选:A.【点睛】本题全等三角形的应用,读懂图信息,将文字语言转化为几何语言是解题关键.9、C【解析】根据多项式与多项式的乘法法则展开后,将含x2与x的进行合并同类项,然后令其系数为0即可.【详解】原式=x3-3x2+nx+mx2-3mx+mn=x3-3x2+mx2+nx-3mx+mn=x3+(m-3)x2+(n-3m)x+mn∵(x+m)(x2-3x+n)的展开式中不含x2和x项∴m-3=0,n-3m=0∴m=3,n=9故选C.【点睛】本题考查多项式乘以多项式的运算法则,解题的关键是先将原式展开,然后将含x2与x的进行合并同类项,然后令其系数为0即可.10、A【解析】连接AD、DB、DF,求出∠AFD=∠ABD=90°,根据HL证两三角形全等得出∠FAD=60°,求出AD∥EF∥GI,过F作FZ⊥GI,过E作EN⊥GI于N,得出平行四边形FZNE得出EF=ZN=a,求出GI的长,求出第一个正六边形的边长是a,是等边三角形QKM的边长的;同理第二个正六边形的边长是等边三角形GHI的边长的;求出第五个等边三角形的边长,乘以即可得出第六个正六边形的边长.连接AD、DF、DB.∵六边形ABCDEF是正六边形,∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt△ABD和RtAFD中∴Rt△ABD≌Rt△AFD(HL),∴∠BAD=∠FAD=×120°=60°,∴∠FAD+∠AFE=60°+120°=180°,∴AD∥EF,∵G、I分别为AF、DE中点,∴GI∥EF∥AD,∴∠FGI=∠FAD=60°,∵六边形ABCDEF是正六边形,△QKM是等边三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等边三角形QKM的边长是a,∴第一个正六边形ABCDEF的边长是a,即等边三角形QKM的边长的,过F作FZ⊥GI于Z,过E作EN⊥GI于N,则FZ∥EN,∵EF∥GI,∴四边形FZNE是平行四边形,∴EF=ZN=a,∵GF=AF=×a=a,∠FGI=60°(已证),∴∠GFZ=30°,∴GZ=GF=a,同理IN=a,∴GI=a+a+a=a,即第二个等边三角形的边长是a,与上面求出的第一个正六边形的边长的方法类似,可求出第二个正六边形的边长是×a;同理第第三个等边三角形的边长是×a,与上面求出的第一个正六边形的边长的方法类似,可求出第三个正六边形的边长是××a;同理第四个等边三角形的边长是××a,第四个正六边形的边长是×××a;第五个等边三角形的边长是×××a,第五个正六边形的边长是××××a;第六个等边三角形的边长是××××a,第六个正六边形的边长是×××××a,即第六个正六边形的边长是×a,故选A.二、填空题(每小题3分,共24分)11、1.【解析】试题分析:根据定义把代入方程,得:,所以,那么=1.故答案为1.考点:二元一次方程组的解.12、1【分析】直接把点P(a,b)代入一次函数y=2x﹣1,可求b=2a﹣1,即可求4a﹣2b+1=1.【详解】解:∵点P(a,b)在一次函数y=2x﹣1的图象上,∴b=2a﹣1∴4a﹣2b+1=4a﹣2(2a﹣1)+1=1故答案为1【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.13、1.【分析】根据角平分线上的点到角的两边距离相等可得CD=DE,再利用“HL”证明Rt△BCD和Rt△BED全等,根据全等三角形对应边相等可得BC=BE,然后求出△ADE的周长=AB.【详解】∵∠C=90∘,BD平分∠CBA,DE⊥AB,∴CD=DE,在Rt△BCD和Rt△BED中,∵∴Rt△BCD≌Rt△BED(HL),∴BC=BE,∴△ADE的周长=AE+AD+DE=AE+AD+CD=AE+AC=AE+BC=AE+BE=AB,∵△ADE的周长为1cm,∴AB=1cm.故答案为1cm.【点睛】本题考查了角平分线的性质和等腰直角三角形,熟练掌握这两个知识点是本题解题的关键.14、25【分析】滑行的距离最短,即是沿着AE的线段滑行,我们可将半圆展开为矩形来研究,展开后,A、D、E三点构成直角三角形,AE为斜边,AD和DE为直角边,写出AD和DE的长,根据题意,写出勾股定理等式,代入数据即可得出AE的距离.【详解】将半圆面展开可得:AD=米,DE=DC-CE=AB-CE=20-5=15米,在Rt△ADE中,米,即滑行的最短距离为25米,故答案为:25.【点睛】此题考查了学生对问题简单处理的能力;直接求是求不出的,所以要将半圆展开,利用已学的知识来解决这个问题.15、1【分析】由题意易证△ACD≌△BCF,△BAE≌△FAE,然后根据三角形全等的性质及题意可求解.【详解】解:AD平分∠BAC,BE⊥AD,∠BAE=∠FAE,∠BEA=∠FEA=90°,AE=AE,△BAE≌△FAE,BE=EF,BE=3,BF=1,∠ACB=90°,∠F+∠FBC=90°,∠EAF+∠F=90°,∠ACD=∠BCF=90°,∠FBC=∠DAC,AC=BC,△ACD≌△BCF,AD=BF=1;故答案为1.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握三角形全等判定的条件是解题的关键.16、8.4×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000084=8.4×10-6,故答案为:8.4×10-6.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17、一个三角形的三个角都相等,这个三角形是等边三角形.【解析】如果一个三角形的三个角都相等,那么这个三角形是等边三角形.所以题设是一个三角形的三个角都相等,结论是这个三角形是等边三角形.考点:命题与定理.18、【解析】提取公因式后利用平方差公式分解因式即可,即原式=.故答案为三、解答题(共66分)19、(1)见解析;(2)△AMN是等边三角形,见解析;(3)【分析】(1)根据线段垂直平分线的性质得到EA=EB,NA=CA,根据三角形的周长公式证明结论;(2)根据等腰三角形的性质、三角形内角和定理得到∠B=∠C=30°,根据三角形的外角性质、等边三角形的判定定理证明;(3)证明ANM=90°,根据勾股定理求出AN、NC,根据勾股定理列式计算得到答案.【详解】(1)证明:∵EM是AB的垂直平分线,∴EA=EB,同理,NA=CA,∴△AMN的周长=MA+MN+NA=MB+MN+NC=BC;(2)解:△AMN是等边三角形,理由如下:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵EA=EB,∴∠MAB=∠B=30°,∴∠AMN=∠MAB+∠B=60°,同理可得,∠ANM=60°,∴△AMN是等边三角形;(3)解:∵NC=NA,∴∠NAC=∠C=45°,∴∠ANM=∠ANC=90°,设NC=NA=x,由勾股定理得,NA2+NC2=AC2,即x2+x2=(3)2,解得,x=3,即NC=NA,∴MB=MA=6﹣MN,在Rt△AMN中,NA2+MN2=AM2,即32+MN2=(6﹣MN)2,解得,MN=.【点睛】本题考查的是线段垂直平分线的性质、等边三角形的判定和性质、勾股定理,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.20、(1)作图见解析;(2)B(﹣3,﹣1),C(1,1);(3)作图见解析.【解析】试题分析:(1)根据点的坐标为(0,3),即可建立正确的平面直角坐标系;
(2)观察建立的直角坐标系即可得出答案;
(3)分别作点关于轴的对称点连接则即为所求.试题解析:(1)所建立的平面直角坐标系如下所示(2)点和点的坐标分别为:(3)所作△如下图所示.21、见解析【分析】根据已知条件求证△EBO≌△DCO,然后可得∠OBC=∠OCB再利用两角相等即可判定△ABC是等腰三角形.【详解】解:在△EBO与△DCO中,,∴△EBO≌△DCO(AAS),
∴OB=OC,
∴∠OBC=∠OCB,
∴∠ABC=∠ACB,
∴AB=AC,
∴△ABC是等腰三角形.【点睛】本题考查全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.22、(1)4039;(2)x﹣y【分析】(1)利用平方差公式变形为(2020+2019)×(2020﹣2019),再进一步计算可得;(2)先分别利用完全平方公式和平方差公式计算括号内的,再计算除法可得.【详解】解:(1)原式=(2020+2019)×(2020﹣2019)=4039×1=4039;(2)原式.【点睛】本题主要考查了乘法公式的应用,解题的关键是熟练掌握整式的混合运算顺序和运算法则及完全平方公式、平方差公式.23、(1)a3﹣b3;(2)m+n【分析】(1)根据多项式乘以多项式法则计算即可得;(2)利用(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机场灯课程设计
- 机器视觉直播课程设计
- 机器人的实现课程设计
- 本科经济统计的课程设计
- 本科生产运行课程设计
- 五保供养志愿者服务协议书
- 木质放火涂料施工方案
- 2024年修订:知识产权许可合同
- 2024年蟹肉罐头项目可行性研究报告
- 餐饮行业电力使用管理制度与建议
- 血常规考试题库含答案全套
- 2023年表彰大会运动员发言稿
- 十字头夹具设计说明书
- 气动人工肌肉系统的静动态特性分析
- 保安人员安全巡查记录表范本
- XX医院按病种付费(DIP)工作实施方案(按病种分值付费(DIP)实施工作流程)
- 长春耐火砖施工方案
- (第九版内科学)呼吸系统总论
- 宣传册沈阳宏美电子
- 大班社会《我长大了》课件
- 脑血管造影术简介及术后护理
评论
0/150
提交评论