重庆市万盛经济技术开发区关坝中学2023-2024学年数学八上期末学业水平测试模拟试题【含解析】_第1页
重庆市万盛经济技术开发区关坝中学2023-2024学年数学八上期末学业水平测试模拟试题【含解析】_第2页
重庆市万盛经济技术开发区关坝中学2023-2024学年数学八上期末学业水平测试模拟试题【含解析】_第3页
重庆市万盛经济技术开发区关坝中学2023-2024学年数学八上期末学业水平测试模拟试题【含解析】_第4页
重庆市万盛经济技术开发区关坝中学2023-2024学年数学八上期末学业水平测试模拟试题【含解析】_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市万盛经济技术开发区关坝中学2023-2024学年数学八上期末学业水平测试模拟试题期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在中,,将绕点逆时针旋转,使点恰好落在线段上的点处,点落在点处,则两点间的距离为()A. B. C. D.2.小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段、分别表示小敏、小聪离B地的距离与已用时间之间的关系,则小敏、小聪行走的速度分别是A.和 B.和C.和 D.和3.满足下列条件的△ABC,不是直角三角形的为()A.∠A=∠B-∠C B.∠A∶∠B∶∠C=1∶1∶2 C.b2=a2-c2 D.a∶b∶c=2∶3∶44.如图,在中,,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当,时,则阴影部分的面积为()A.4 B. C. D.85.正比例函数的函数值随的增大而减小,则一次函数的图象大致是()A. B. C. D.6.在△ABC中,∠C=∠B,与△ABC全等的三角形有一个角是100°,那么△ABC中与这个角对应的角是()A.∠B B.∠A C.∠C D.∠B或∠C7.如图,△ABE≌△ACF,若AB=5,AE=2,则EC的长度是()A.2 B.3 C.4 D.58.下列四个图形中,不是轴对称图形的是()A. B. C. D.9.下列调查适合抽样调查的是()A.审核书稿中的错别字 B.企业招聘,对应聘人员进行面试C.了解八名同学的视力情况 D.调查某批次汽车的抗撞击能力10.对于函数y=-3x+1,下列说法不正确的是(

)A.它的图象必经过点(1,-2) B.它的图象经过第一、二、四象限C.当x>时,y>0 D.它的图象与直线y=-3x平行11.小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说:“至多12元.”丙说:“至多10元.”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为()A. B. C. D.12.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,则下列等式不正确的是()A.AB=AC B.BE=DC C.AD=DE D.∠BAE=∠CAD二、填空题(每题4分,共24分)13.观察下列等式:第1个等式:a1=,第2个等式:a2=,第3个等式:a3==2-,第4个等式:a4=,…按上述规律,回答以下问题:(1)请写出第n个等式:an=__________.(2)a1+a2+a3+…+an=_________14.如图,在平行四边形中,,则平行四边形的面积为____________.15.若点关于轴的对称点是,则的值是__________.16.一次生活常识知识竞赛一共有20道题,答对一题得5分,不答得0分,答错扣2分,小聪有1道题没答,竞赛成绩超过80分,则小聪至少答对了__________道题.17.如图,将长方形沿对角线折叠,得到如图所示的图形,点的对应点是点,与交于点.若,,则的长是_____.18.如图,在方格纸中,以AB为一边做△ABP,使之与△ABC全等,从P1,P2,P3,P4,四个点中,满足条件的点P有_____个三、解答题(共78分)19.(8分)已知:如图,在矩形ABCD中,AB=6,BC=8,E为直线BC上一点.(1)如图1,当E在线段BC上,且DE=AD时,求BE的长;(2)如图2,点E为BC延长长线上一点,若BD=BE,连接DE,M为ED的中点,连接AM,CM,求证:AM⊥CM;(3)如图3,在(2)条件下,P,Q为AD边上的两个动点,且PQ=5,连接PB、MQ、BM,求四边形PBMQ的周长的最小值.20.(8分)在等边三角形ABC中,点D是BC的中点,点E、F分别是边AB、AC(含线段AB、AC的端点)上的动点,且∠EDF=120°,小明和小慧对这个图形展开如下研究:问题初探:(1)如图1,小明发现:当∠DEB=90°时,BE+CF=nAB,则n的值为______;问题再探:(2)如图2,在点E、F的运动过程中,小慧发现两个有趣的结论:①DE始终等于DF;②BE与CF的和始终不变;请你选择其中一个结论加以证明.成果运用(3)若边长AB=4,在点E、F的运动过程中,记四边形DEAF的周长为L,L=DE+EA+AF+FD,则周长L的变化范围是______.21.(8分)(1)化简:(2)化简:(3)因式分解:(4)因式分解:22.(10分)如图,在△ABC中,∠BAC=60°,∠C=40°,P,Q分别在BC,CA上,AP,BQ分别是∠BAC,∠ABC的角平分线.求证:BQ+AQ=AB+BP.23.(10分)如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发以每秒1cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上(但不与A点重合),求t的值.24.(10分)先化简,再求值:,其中.25.(12分)(1)如图1,求证:(图1)(2)如图2,是等边三角形,为三角形外一点,,求证:(图2)26.抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B两仓库.已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨.从甲、乙两库到A、B两库的路程和运费如下表:(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)路程(千米)运费(元/吨•千米)甲库乙库甲库乙库A库20151212B库2520108(1)若甲库运往A库粮食x吨,请写出将粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式;(2)当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?

参考答案一、选择题(每题4分,共48分)1、A【分析】连接BD,利用勾股定理求出AB,然后根据旋转的性质可得AC=AE=4,∠AED=∠C=90°,BC=DE=3,从而求出∠DEB和BE,最后利用勾股定理即可求出结论.【详解】解:连接BD∵∴AB=由旋转的性质可得AC=AE=4,∠AED=∠C=90°,BC=DE=3∴∠DEB=180°-∠AED=90°,BE=AB-AE=1在Rt△DEB中,BD=故选A.【点睛】此题考查的是勾股定理和旋转的性质,掌握勾股定理和旋转的性质是解决此题的关键.2、D【解析】设小敏的速度为:m,则函数式为,y=mx+b,由已知小敏经过两点(1.6,4.8)和(2.8,0),所以得:4.8=1.6m+b,0=2.8m+b,解得:m=-4,b=11.2,小敏离B地的距离y(km)与已用时间x(h)之间的关系为:y=-4x+11.2;由实际问题得小敏的速度为4km/h;设小聪的速度为:n,则函数图象过原点则函数式为,y=nx,由已知经过点(1.6,4.8),所以得:4.8=1.6n,则n=3,即小聪的速度为3km/h,故选D.3、D【解析】根据余角定理或勾股定理的逆定理即可判断.【详解】A.∠A=∠B-∠C得到∠B=90,故三角形是直角三角形;B.设∠A=∠B=x,则∠C=2x,得x+x+2x=180,求得x=45,∴∠C=90,故三角形是直角三角形;C.由b2=a2-c2得,故三角形是直角三角形;D.设a=2x,则b=3x,c=4x,∵,∴此三角形不是直角三角形.故选:D.【点睛】此题考查直角三角形的判定,可根据三个角的度数关系判断,也可根据三边的关系利用勾股定理的逆定理判定.4、A【分析】先根据勾股定理求出AB,然后根据S阴影=S半圆AC+S半圆BC+S△ABC-S半圆AB计算即可.【详解】解:根据勾股定理可得AB=∴S阴影=S半圆AC+S半圆BC+S△ABC-S半圆AB===4故选A.【点睛】此题考查的是求不规则图形的面积,掌握用勾股定理解直角三角形、半圆的面积公式和三角形的面积公式是解决此题的关键.5、A【分析】根据的函数值随的增大而减小,得到k0,由此判定所经过的象限为一、二、三象限.【详解】∵的函数值随的增大而减小,∴k0,∴经过一、二、三象限,A选项符合.故选:A.【点睛】此题考查一次函数的性质,y=kx+b中,k0时图象过一三象限,k0时图象过二四象限;b0时图象交y轴于正半轴,b0时图象交y轴于负半轴,掌握特点即可正确解答.6、B【分析】根据三角形的内角和等于180°可知,∠C与∠B不可能为100°,根据全等三角形的性质可得∠A为所求角.【详解】解:假设,,与矛盾,假设不成立,则,故答案为B.【点睛】本题考查了全等三角形的基本性质和三角形内角和定理,满足内角和定理的前提下找到对应角是解题关键.7、B【分析】根据△ABE≌△ACF,可得三角形对应边相等,由EC=AC-AE即可求得答案.【详解】解:∵△ABE≌△ACF,AB=5,AE=2,∴AB=AC=5,∴EC=AC-AE=5-2=3,故选:B.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.8、D【解析】根据轴对称图形的定义进行判断即可.【详解】A、B、C选项的图形都是轴对称图形;D选项的图形不是轴对称图形.故选:D.【点睛】本题考查轴对称图形的定义,一个图形沿着某条直线折叠后直线两旁的部分能够完全重合,这个图形就叫轴对称图形,这条直线叫对称轴.9、D【分析】根据“抽样调查”和“全面调查”各自的特点结合各选项中的实际问题分析解答即可.【详解】A选项中,“审核书稿中的错别字”适合使用“全面调查”;B选项中,“企业招聘,对应聘人员进行面试”适合使用“全面调查”;C选项中,“了解八名同学的视力情况”适合使用“全面调查”;D选项中,“调查某批次汽车的抗撞击能力”适合使用“抽样调查”.故选D.【点睛】熟知“抽样调查和全面调查各自的特点和适用范围”是解答本题的关键.10、C【分析】根据一次函数图象上点的坐标特征对A进行判断;根据一次函数的性质对B、D进行判断;令y>0,得到x<,则可对C进行判断.【详解】解:A.当x=1时,y=-2,正确;B.函数经过一、二、四象限,正确;C.令y>0,即-3x+1>0,解得x<,错误;D.∵两个直线的斜率相等,∴图象与直线平行,正确.故答案为:C.【点睛】此题考查一次函数的性质,解题关键在于掌握k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.11、B【分析】根据三人说法都错了得出不等式组解答即可.【详解】根据题意可得:,可得:,∴故选B.【点睛】此题考查一元一次不等式组的应用,关键是根据题意得出不等式组解答.12、C【分析】由全等三角形的性质可得到对应边、对应角相等,结合条件逐项判断即可.【详解】∵△ABE≌△ACD,

∴AB=AC,AD=AE,BE=DC,∠BAE=∠CAD,∴A、B、D正确,AD与DE没有条件能够说明相等,∴C不正确,

故选:C.【点睛】本题主要考查了全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.二、填空题(每题4分,共24分)13、【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a1=,第2个等式:a2=,第3个等式:a3==2-,第4个等式:a4=,……∴第n个等式:;故答案为:;(2)==;故答案为:.【点睛】本题考查了二次根式的加减混合运算,以及数字规律问题,解题的关键是掌握题目中的规律,从而进行解题14、48m1【分析】由平行四边形的性质可得BC=AD=8m,然后利用勾股定理求出AC,根据底乘高即可得出面积.【详解】∵四边形ABCD为平行四边形∴BC=AD=8m∵AC⊥BC∴△ABC为直角三角形AC=∴平行四边形ABCD的面积=m1故答案为:48m1.【点睛】本题考查了平行四边形的性质与勾股定理,题目较简单,根据平行四边形的性质找到直角三角形的边长是解题的关键.15、-3【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数求出m、n的值,再计算m+n的值即可.【详解】∵点关于轴的对称点是,∴m=-2,n=-1,∴m+n=-2-1=-3.故答案为-3.【点睛】本题主要考查关于坐标轴对称的点的特点.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.16、1【分析】设小聪答对了x道题,根据“答对题数×5−答错题数×2>80分”列出不等式,解之可得.【详解】设小聪答对了x道题,根据题意,得:5x−2(19−x)>80,解得x>16,∵x为整数,∴x=1,即小聪至少答对了1道题,故答案为:1.【点睛】本题主要考查一元一次不等式的应用,列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.17、【详解】∵四边形ABCD是矩形,∴AB=CD=2,AD=BC=4,AD∥BC,∴∠EAC=∠ACB,∵折叠,∴∠ACE=∠ACB,∴∠EAC=∠ACE,∴AE=CE,在Rt△DEC中,,设AE=x,∴,,故答案为:.【点睛】本题考查了翻折变换,矩形的性质的运用,平行线的性质的运用,等腰三角形的判定的运用,解答时灵活运用折叠的性质求解是关键.18、3【分析】根据,并且两个三角形有一条公共边,所以可以作点C关于直线AB以及线段AB的垂直平分线的对称点,得到两个点P,再看一下点P关于直线AB的对称点,即可得出有3个这样的点P.【详解】解:由题可知,以AB为一边做△ABP使之与△ABC全等,∵两个三角形有一条公共边AB,∴可以找出点C关于直线AB的对称点,即图中的,可得:;再找出点C关于直线AB的垂直平分线的对称点,即为图中点,可得:;再找到点关于直线AB的对称点,即为图中,可得:;所以符合条件的有、、;故答案为3.【点睛】本题考查全等以及对称,如果已知两个三角形全等,并且有一条公共边,可以考虑用对称的方法先找其中的几个点,然后再作找到的这些点的对称点,注意找到的点要检验一下,做到不重不漏.三、解答题(共78分)19、(1)BE=8﹣2;(2)证明见解析;(3)+5+3.【分析】(1)先求出DE=AD=4,最后用勾股定理即可得出结论;(2)先判断出∠BMD=90°,再判断出△ADM≌△BCM得出∠AMD=∠BMC,即可得出结论;(3)由于BM和PQ是定值,只要BP+QM最小,利用对称确定出MG'就是BP+QM的最小值,最后利用勾股定理即可得出结论.【详解】解:(1)如图1中,∵四边形ABCD是矩形,∴∠C=90°,CD=AB=6,AD=BC=8,∴DE=AD=8,在Rt△CDE中,CE=,∴BE=BC﹣CE=8﹣2;(2)如图2,连接BM,∵点M是DE的中点,∴DM=EM,∵BD=BE,∴BM⊥DE,∴∠BMD=90°,∵点M是Rt△CDE的斜边的中点,∴DM=CM,∴∠CDM=∠DCM,∴∠ADM=∠BCM在△ADM和△BCM中,,∴△ADM≌△BCM(SAS),∴∠AMD=∠BMC,∴∠AMC=∠AMB+∠BMC=∠AMB+∠AMD=∠BMD=90°,∴AM⊥CM;(3)如图3中,过点Q作QG∥BP交BC于G,作点G关于AD的对称点G',连接QG',当点G',Q,M在同一条线上时,QM+BP最小,而PQ和BM是定值,∴此时,四边形PBMQ周长最小,∵QG∥PB,PQ∥BG,∴四边形BPQG是平行四边形,∴QG=BP,BG=PQ=5,∴CG=3,如图2,在Rt△BCD中,CD=6,BC=8,∴BD=10,∴BE=10,∴BG=BE﹣BG=5,CE=BE﹣BC=2,∴HM=1+3=4,HG=CD=3,在Rt△MHG'中,HG'=6+3=9,HM=4,∴MG'=,在Rt△CDE中,DE=,∴ME=,在Rt△BME中,BM==3,∴四边形PBMQ周长最小值为BP+PQ+MQ+BM=QG+PQ+QM+BM=MG'+PQ+PM=+5+3,【点睛】本题是一道四边形综合题,主要考查了矩形的性质、勾股定理、全等三角形的判定和性质、等腰三角形的性质,确定BP+QM的最小值是解答本题的关键.20、(1);(2)BE与CF的和始终不变,见解析;(3)【解析】(1)先利用等边三角形判断出BD=CD=AB,进而判断出BE=BD,再判断出∠DFC=90°,得出CF=CD,即可得出结论;(2)①构造出△EDG≌△FDH(ASA),得出DE=DF,即可得出结论;②由(1)知,BG+CH=AB,由①知,△EDG≌△FDH(ASA),得出EG=FH,即可得出结论;(3)由(1)(2)判断出L=2DE+6,再判断出DE⊥AB时,L最小,点F和点C重合时,DE最大,即可得出结论.【详解】解:(1)∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC,∵点D是BC的中点,∴BD=CD=BC=AB,∵∠DEB=90°,∴∠BDE=90°-∠B=30°,在Rt△BDE中,BE=BD,∵∠EDF=120°,∠BDE=30°,∴∠CDF=180°-∠BDE-∠EDF=30°,∵∠C=60°,∴∠DFC=90°,在Rt△CFD中,CF=CD,∴BE+CF=BD+CD=BC=AB,∵BE+CF=nAB,∴n=,故答案为;(2)如图2①过点D作DG⊥AB于G,DH⊥AC于H,∴∠DGB=∠AGD=∠CFD=∠AHF=90°,∵△ABC是等边三角形,∴∠A=60°,∴∠GDH=360°-∠AGD-∠AHD-∠A=120°,∵∠EDF=120°,∴∠EDG=∠FDH,∵△ABC是等边三角形,且D是BC的中点,∴∠BAD=∠CAD,∵DG⊥AB,DH⊥AC,∴DG=DH,在△EDG和△FDH中,,∴△EDG≌△FDH(ASA),∴DE=DF,即:DE始终等于DF;②同(1)的方法得,BG+CH=AB,由①知,△EDG≌△FDH(ASA),∴EG=FH,∴BE+CF=BG-EG+CH+FH=BG+CH=AB,∴BE与CF的和始终不变(3)由(2)知,DE=DF,BE+CF=AB,∵AB=4,∴BE+CF=2,∴四边形DEAF的周长为L=DE+EA+AF+FD=DE+AB-BE+AC-CF+DF=DE+AB-BE+AB+DE=2DE+2AB-(BE+CF)=2DE+2×4-2=2DE+6,∴DE最大时,L最大,DE最小时,L最小,当DE⊥AB时,DE最小,由(1)知,BG=BD=1,∴DE最小=BG=,∴L最小=2+6,当点F和点C重合时,DE最大,此时,∠BDE=180°-∠EDF=120°=60°,∵∠B=60°,∴∠B=∠BDE=∠BED=60°,∴△BDE是等边三角形,∴DE=BD=AB=2,即:L最大=2×2+6=1,∴周长L的变化范围是2≤L≤1,故答案为2≤L≤1.【点睛】此题是四边形综合题,主要考查了等边三角形的性质,含30度角的直角三角形的性质,角平分线定理,全等三角形的判定和性质,旋转的性质,构造出全等三角形是解本题的关键.21、(1)(2)(3)(4)【分析】(1)根据乘方公式即可求解;(2)根据整式的除法运算即可求解;(3)先提取公因式,再利用完全平方公式进行因式分解;(4)先提取公因式,再利用平方差公式进行因式分解.【详解】(1)==(2)=(3)==(4)===【点睛】此题主要考查整式的运算及因式分解,解题的关键是熟知整式的运算法则及因式分解的方法.22、证明见解析.【分析】延长AB到D,使BD=BP,连接PD,由题意得:∠D=∠1=∠4=∠C=40°,从而得QB=QC,易证△APD≌△APC,从而得AD=AC,进而即可得到结论.【详解】延长AB到D,使BD=BP,连接PD,则∠D=∠1.∵AP,BQ分别是∠BAC,∠ABC的平分线,∠BAC=60°,∠ACB=40°,∴∠1=∠2=30°,∠ABC=180°-60°-40°=80°,∠3=∠4=40°=∠C,∴QB=QC,又∠D+∠1=∠3+∠4=80°,∴∠D=40°.在△APD与△APC中,∴△APD≌△APC(AAS),∴AD=AC.∴AB+BD=AQ+QC,∴AB+BP=BQ+AQ.【点睛】本题主要考查等腰三角形的判定和性质,三角形全等的判定和性质定理,添加合适的辅助线,构造等腰三角形和全等三角形,是解题的关键.23、(1);(2).【分析】(1)根据中垂线性质可知,作AB的垂直平分线,与AC交于点P,则满足PA=PB,在Rt△ABC中,用勾股定理计算出AC=8cm,再用t表示出PA=tcm,则PC=cm,在Rt△PBC中,利用勾股定理建立方程求t;(2)过P作PD⊥AB于D点,由角平分线性质可得PC=PD,由题意PC=cm,则PB=cm,在Rt△ABD中,利用勾股定理建立方程求t.【详解】(1)作AB的垂直平分线交AB于D,交AC于P,连接PB,如图所示,由垂直平分线的性质可知PA=PB,此时P点满足题意,在Rt△ABC中,cm,由题意PA=tcm,PC=cm,在Rt△PBC中,,即,解得(2)作∠CAB的平分线AP,过P作PD⊥AB于D点,如图所示∵AP平分∠CAB,PC⊥AC,PD⊥AB,∴PC=PD在Rt△ACP和Rt△A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论