版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省鸡泽县重点名校2024年中考数学对点突破模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.下列各数中是无理数的是()A.cos60° B. C.半径为1cm的圆周长 D.2.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b3.如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是()A.相切 B.相交 C.相离 D.无法确定4.如图,中,,且,设直线截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的A. B. C. D.5.去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是()A.最低温度是32℃ B.众数是35℃ C.中位数是34℃ D.平均数是33℃6.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是()A. B.C. D.7.下列计算结果等于0的是()A. B. C. D.8.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. B. C. D.9.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为().A.50° B.40° C.30° D.25°10.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在3×3的正方形网格中,点A,B,C,D,E,F,G都是格点,从C,D,E,F,G五个点中任意取一点,以所取点及AB为顶点画三角形,所画三角形时等腰三角形的概率是_____.12.如图,在Rt△ABC中,AC=4,BC=3,将Rt△ABC以点A为中心,逆时针旋转60°得到△ADE,则线段BE的长度为_____.13.=________14.ABCD为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2cm/s的速度向D移动,P、Q两点从出发开始到__________秒时,点P和点Q的距离是10cm.15.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为____________海里/时.16.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.正多边形的一个外角是40°,则这个正多边形的边数是____________.B.运用科学计算器比较大小:________sin37.5°.三、解答题(共8题,共72分)17.(8分)观察下列等式:第1个等式:;第2个等式:;第3个等式:;第4个等式:;…请解答下列问题:按以上规律列出第5个等式:a5==;用含有n的代数式表示第n个等式:an==(n为正整数);求a1+a2+a3+a4+…+a100的值.18.(8分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目
频数(人数)
羽毛球
30
篮球
乒乓球
36
排球
足球
12
请根据以上图表信息解答下列问题:频数分布表中的,;在扇形统计图中,“排球”所在的扇形的圆心角为度;全校有多少名学生选择参加乒乓球运动?19.(8分)已知,,,斜边,将绕点顺时针旋转,如图1,连接.(1)填空:;(2)如图1,连接,作,垂足为,求的长度;(3)如图2,点,同时从点出发,在边上运动,沿路径匀速运动,沿路径匀速运动,当两点相遇时运动停止,已知点的运动速度为1.5单位秒,点的运动速度为1单位秒,设运动时间为秒,的面积为,求当为何值时取得最大值?最大值为多少?20.(8分)如图矩形ABCD中AB=6,AD=4,点P为AB上一点,把矩形ABCD沿过P点的直线l折叠,使D点落在BC边上的D′处,直线l与CD边交于Q点.(1)在图(1)中利用无刻度的直尺和圆规作出直线l.(保留作图痕迹,不写作法和理由)(2)若PD′⊥PD,①求线段AP的长度;②求sin∠QD′D.21.(8分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.求证:△AEF≌△DEB;证明四边形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD的面积.22.(10分)(1)计算:2﹣2﹣+(1﹣)0+2sin60°.(2)先化简,再求值:()÷,其中x=﹣1.23.(12分)如图,以△ABC的边AB为直径的⊙O分别交BC、AC于F、G,且G是的中点,过点G作DE⊥BC,垂足为E,交BA的延长线于点D(1)求证:DE是的⊙O切线;(2)若AB=6,BG=4,求BE的长;(3)若AB=6,CE=1.2,请直接写出AD的长.24.关于的一元二次方程.求证:方程总有两个实数根;若方程有一根小于1,求的取值范围.
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】分析:根据“无理数”的定义进行判断即可.详解:A选项中,因为,所以A选项中的数是有理数,不能选A;B选项中,因为是无限循环小数,属于有理数,所以不能选B;C选项中,因为半径为1cm的圆的周长是cm,是个无理数,所以可以选C;D选项中,因为,2是有理数,所以不能选D.故选.C.点睛:正确理解无理数的定义:“无限不循环小数叫做无理数”是解答本题的关键.2、A【解析】
根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c-a>0,a+b<0,根据绝对值的性质化简计算.【详解】由数轴可知,b<a<0<c,∴c-a>0,a+b<0,则|c-a|-|a+b|=c-a+a+b=c+b,故选A.【点睛】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.3、B【解析】
首先过点A作AM⊥BC,根据三角形面积求出AM的长,得出直线BC与DE的距离,进而得出直线与圆的位置关系.【详解】解:过点A作AM⊥BC于点M,交DE于点N,∴AM×BC=AC×AB,∴AM===2.1.∵D、E分别是AC、AB的中点,∴DE∥BC,DE=BC=2.5,∴AN=MN=AM,∴MN=1.2.∵以DE为直径的圆半径为1.25,∴r=1.25>1.2,∴以DE为直径的圆与BC的位置关系是:相交.故选B.【点睛】本题考查了直线和圆的位置关系,利用中位线定理得出BC到圆心的距离与半径的大小关系是解题的关键.4、D【解析】
Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A,即∠AOD=∠OCD=45°,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.【详解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).故S与t之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象;故选D.【点睛】本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.5、D【解析】分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是=33℃.故选D.点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.6、A【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.详解:该几何体的左视图是:故选A.点睛:本题考查了学生的思考能力和对几何体三种视图的空间想象能力.7、A【解析】
各项计算得到结果,即可作出判断.【详解】解:A、原式=0,符合题意;
B、原式=-1+(-1)=-2,不符合题意;
C、原式=-1,不符合题意;
D、原式=-1,不符合题意,
故选:A.【点睛】本题考查了有理数的运算,熟练掌握运算法则是解本题的关键.8、B【解析】
直接得出两位数是3的倍数的个数,再利用概率公式求出答案.【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,十位数为3,则两位数是3的倍数的个数为2.∴得到的两位数是3的倍数的概率为:=.故答案选:B.【点睛】本题考查了概率的知识点,解题的关键是根据题意找出两位数是3的倍数的个数再运用概率公式解答即可.9、B【解析】
解:如图,由两直线平行,同位角相等,可求得∠3=∠1=50°,根据平角为180°可得,∠2=90°﹣50°=40°.故选B.【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.10、A【解析】
解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=,∴AG==2,∴AE=2AG=4;∴S△ABE=AE•BG=.∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1,∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=S△ABE=.故选A.【点睛】本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、.【解析】
找出从C,D,E,F,G五个点中任意取一点组成等腰三角形的个数,再根据概率公式即可得出结论.【详解】∵从C,D,E,F,G五个点中任意取一点共有5种情况,其中A、B、C;A、B、F两种取法,可使这三定组成等腰三角形,∴所画三角形时等腰三角形的概率是,故答案是:.【点睛】考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.12、【解析】
连接CE,作EF⊥BC于F,根据旋转变换的性质得到∠CAE=60°,AC=AE,根据等边三角形的性质得到CE=AC=4,∠ACE=60°,根据直角三角形的性质、勾股定理计算即可.【详解】解:连接CE,作EF⊥BC于F,
由旋转变换的性质可知,∠CAE=60°,AC=AE,
∴△ACE是等边三角形,
∴CE=AC=4,∠ACE=60°,
∴∠ECF=30°,
∴EF=CE=2,
由勾股定理得,CF==,
∴BF=BC-CF=,
由勾股定理得,BE==,
故答案为:.【点睛】本题考查的是旋转变换的性质、等边三角形的判定和性质,掌握旋转变换对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.13、13【解析】=2+9-4+6=13.故答案是:13.14、或【解析】
作PH⊥CD,垂足为H,设运动时间为t秒,用t表示线段长,用勾股定理列方程求解.【详解】设P,Q两点从出发经过t秒时,点P,Q间的距离是10cm,作PH⊥CD,垂足为H,则PH=AD=6,PQ=10,∵DH=PA=3t,CQ=2t,∴HQ=CD−DH−CQ=|16−5t|,由勾股定理,得解得即P,Q两点从出发经过1.6或4.8秒时,点P,Q间的距离是10cm.故答案为或.【点睛】考查矩形的性质,勾股定理,解一元二次方程等,表示出HQ=CD−DH−CQ=|16−5t|是解题的关键.15、【解析】
设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.【详解】如图所示:该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°−60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3x,解得:x=.即该船行驶的速度为海里/时;故答案为:.【点睛】本题考查的是解直角三角形,熟练掌握方向角是解题的关键.16、9,>【解析】
(1)根据任意多边形外角和等于360可以得到正多边形的边数(2)用科学计算器计算即可比较大小.【详解】(1)正多边形的一个外角是40°,任意多边形外角和等于360(2)利用科学计算器计算可知,sin37.5°.故答案为(1).9,(2).>【点睛】此题重点考察学生对正多边形外交和的理解,掌握正多边形外角和,会用科学计算器是解题的关键.三、解答题(共8题,共72分)17、(1)(2)(3)【解析】
(1)(2)观察知,找等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为:序号的2倍减1和序号的2倍加1.(3)运用变化规律计算【详解】解:(1)a5=;(2)an=;(3)a1+a2+a3+a4+…+a100.18、(1)24,1;(2)54;(3)360.【解析】
(1)根据选择乒乓球运动的人数是36人,对应的百分比是30%,即可求得总人数,然后利用百分比的定义求得a,用总人数减去其它组的人数求得b;(2)利用360°乘以对应的百分比即可求得;(3)求得全校总人数,然后利用总人数乘以对应的百分比求解.【详解】(1)抽取的人数是36÷30%=120(人),则a=120×20%=24,b=120﹣30﹣24﹣36﹣12=1.故答案是:24,1;(2)“排球”所在的扇形的圆心角为360°×=54°,故答案是:54;(3)全校总人数是120÷10%=1200(人),则选择参加乒乓球运动的人数是1200×30%=360(人).19、(1)1;(2);(3)x时,y有最大值,最大值.【解析】
(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.【详解】(1)由旋转性质可知:OB=OC,∠BOC=1°,∴△OBC是等边三角形,∴∠OBC=1°.故答案为1.(2)如图1中.∵OB=4,∠ABO=30°,∴OAOB=2,ABOA=2,∴S△AOC•OA•AB2×2.∵△BOC是等边三角形,∴∠OBC=1°,∠ABC=∠ABO+∠OBC=90°,∴AC,∴OP.(3)①当0<x时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.则NE=ON•sin1°x,∴S△OMN•OM•NE1.5xx,∴yx2,∴x时,y有最大值,最大值.②当x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin1°(8﹣1.5x),∴yON×MHx2+2x.当x时,y取最大值,y,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y•MN•OG=12x,当x=4时,y有最大值,最大值=2.综上所述:y有最大值,最大值为.【点睛】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题.20、(1)见解析;(2)【解析】
(1)根据题意作出图形即可;(2)由(1)知,PD=PD′,根据余角的性质得到∠ADP=∠BPD′,根据全等三角形的性质得到AD=PB=4,得到AP=2;根据勾股定理得到PD==2,根据三角函数的定义即可得到结论.【详解】(1)连接PD,以P为圆心,PD为半径画弧交BC于D′,过P作DD′的垂线交CD于Q,则直线PQ即为所求;(2)由(1)知,PD=PD′,∵PD′⊥PD,∴∠DPD′=90°,∵∠A=90°,∴∠ADP+∠APD=∠APD+∠BPD′=90°,∴∠ADP=∠BPD′,在△ADP与△BPD′中,,∴△ADP≌△BPD′,∴AD=PB=4,AP=BD′∵PB=AB﹣AP=6﹣AP=4,∴AP=2;∴PD==2,BD′=2∴CD′=BC-BD′=4-2=2∵PD=PD′,PD⊥PD′,∵DD′=PD=2,∵PQ垂直平分DD′,连接QD′则DQ=D′Q∴∠QD′D=∠QDD′∴sin∠QD′D=sin∠QDD′=.【点睛】本题考查了作图-轴对称变换,矩形的性质,折叠的性质,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.21、(1)证明详见解析;(2)证明详见解析;(3)1.【解析】
(1)利用平行线的性质及中点的定义,可利用AAS证得结论;
(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;
(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.【详解】(1)证明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,
∴AE=DE,
在△AFE和△DBE中,
∴△AFE≌△DBE(AAS);
(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.
∵AD为BC边上的中线
∴DB=DC,
∴AF=CD.
∵AF∥BC,
∴四边形ADCF是平行四边形,
∵∠BAC=90°,D是BC的中点,E是AD的中点,
∴AD=DC=BC,
∴四边形ADCF是菱形;
(3)连接DF,
∵AF∥BD,AF=BD,
∴四边形ABDF是平行四边形,
∴DF=AB=5,
∵四边形ADCF是菱形,
∴S菱形ADCF=AC▪DF=×4×5=1.【点睛】本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.22、(1)(2)【解析】
(1)根据负整数指数幂、二次根式、零指数幂和特殊角的三角函数值可以解答本题;(2)根据分式的减法和除法可以化简题目中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 厨房员工服务协议书
- 招生咨询合同范例
- 屋顶补漏工程合同书
- 2024年车辆损害赔偿协议书范本
- 技术服务聘用协议范本
- 最标准版商铺租赁合同
- 2024收养人员入院协议书样本
- 仓房租赁协议
- 定制外教聘请协议书
- 商标设计协议书
- 北京应急指挥系统建设
- 部编版一年级语文上册第1课《秋天》精品课件【最新】
- 以“政府绩效与公众信任”为主题撰写一篇小论文6篇
- 高校教师培训心得体会2000字3篇
- 电力专业标准化技术委员会管理细则
- 《用一元一次方程求解数轴上动点问题》 课件
- 水泥用灰岩矿矿产资源开发利用方案
- 老年友善医院创建-老年人社会服务相关职责
- 高等天气学讲座---锋生动力学和锋面次级环流课件
- 液压站更换作业指导书
- 《犯罪学》课程教学大纲
评论
0/150
提交评论