版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题12三角函数中的最值模型之胡不归模型胡不归模型可看作将军饮马衍生,主要考查转化与化归等的数学思想,近年在中考数学和各地的模拟考中常以压轴题的形式考查,学生不易把握。本专题就最值模型中的胡不归问题进行梳理及对应试题分析,方便掌握。在解决胡不归问题主要依据是:点到线的距离垂线段最短。【模型背景】从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A到家B之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?”看到这里很多人都会有一个疑问,少年究竟能不能提前到家呢?假设可以提早到家,那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题.知识储备:在直角三角形中锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即。【模型解读】一动点P在直线MN外的运动速度为V1,在直线MN上运动的速度为V2,且V1<V2,A、B为定点,点C在直线MN上,确定点C的位置使的值最小.(注意与阿氏圆模型的区分)1),记,即求BC+kAC的最小值.2)构造射线AD使得sin∠DAN=k,,CH=kAC,将问题转化为求BC+CH最小值.3)过B点作BH⊥AD交MN于点C,交AD于H点,此时BC+CH取到最小值,即BC+kAC最小.【解题关键】在求形如“PA+kPB”的式子的最值问题中,关键是构造与kPB相等的线段,将“PA+kPB”型问题转化为“PA+PC”型.(若k>1,则提取系数,转化为小于1的形式解决即可)。【最值原理】两点之间线段最短及垂线段最短。例1.(2023·四川绵阳·九年级校联考阶段练习)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,点D、F分别是边AB,BC上的动点,连接CD,过点A作AE⊥CD交BC于点E,垂足为G,连接GF,则GF+FB的最小值是例2.(2023上·广东佛山·八年级校考阶段练习)如图,在长方形中,,,点在上,连接,在点的运动过程中,的最小值为.
例3.(2023·四川乐山·统考二模)如图,菱形中,,,是对角线上的任意一点,则的最小值为(
).
A. B. C. D.例4.(2023.绵阳市八年级期中)P是正方形对角线上一点,AB=2,则PA+PB+PC的最小值为。例5.(2023上·福建福州·九年级校联考期中)已知如图,中直径,,点是射线上的一个动点,连接,则的最小值为.例6.(2023·广东深圳·校考模拟预测)如图,在平面直角坐标系中,二次函数的图象与x轴交于A、C两点,与y轴交于点B,若P是x轴上一动点,点在y轴上,连接,则的最小值是.
例7.(2022·湖南九年级期中)如果有一条直线经过三角形的某个顶点,将三角形分成两个三角形,其中一个三角形与原三角形相似,则称该直线为三角形的“自相似分割线”.如图1,在△ABC中,AB=AC=1,∠BAC=108°,DE垂直平分AB,且交BC于点D,连接AD.(1)证明直线AD是△ABC的自相似分割线;(2)如图2,点P为直线DE上一点,当点P运动到什么位置时,PA+PC的值最小?求此时PA+PC的长度.(3)如图3,射线CF平分∠ACB,点Q为射线CF上一点,当取最小值时,求∠QAC的正弦值.例8.(2023·浙江宁波·九年级开学考试)如图,在平面直角坐标系中,一次函数分别交x轴、y轴于A、B两点,若C为x轴上的一动点,则2BC+AC的最小值为__________.例9.(2023.重庆九年级一诊)如图①,抛物线y=﹣x2+x+4与x轴交于A,B两点,与y轴交于点C,点D为线段AC的中点,直线BD与抛物线交于另一点E,与y轴交于点F.(1)求直线BD的解析式;(2)如图②,点P是直线BE上方抛物线上一动点,连接PD,PF,当△PDF的面积最大时,在线段BE上找一点G,使得PG﹣GE的值最小,求出点G的坐标及PG﹣GE的最小值;课后专项训练1.(2023·四川攀枝花·统考二模)如图,中,,,,为边上的一动点,则的最小值等于()A.2 B.4 C.3 D.52.(2023春·广东广州·九年级校考阶段练习)如图,菱形的边长为5,对角线的长为,为上一动点,则的最小值等于______.3.(2021·眉山市·中考真题)如图,在菱形中,,对角线、相交于点,点在线段上,且,点为线段上的一个动点,则的最小值是______.4.(2023春·浙江·八年级专题练习)如图,矩形ABCD中AB=3,BC,E为线段AB上一动点,连接CE,则AE+CE的最小值为___.5.(2023·重庆沙坪坝·八年级校考期末)如图,在直角坐标系中,直线:与轴交于点,与轴交于点,分别以、为边作矩形,点、在直线上,且,则的最小值是.6.(2023·广东珠海·校考三模)如图,在中,,,,点是斜边上的动点,则的最小值为.
7.(2022·湖南·九年级月考)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AB=6,△BCD为等边三角形点E为△BCD围成的区域(包括各边)的一点过点E作EM∥AB,交直线AC于点M作EN∥AC交直线AB于点N,则AN+AM的最大值为.8.(2023·内蒙古通辽·统考一模)如图,已知菱形ABCD的边长为8,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD的最小值是________.9.(2021·山东淄博市·中考真题)两张宽为的纸条交叉重叠成四边形,如图所示.若,则对角线上的动点到三点距离之和的最小值是__________.10.(2023春·广东广州·八年级校考期中)在菱形中,.(1)如图1,过点B作于点E,连接,点是线段的中点,连接,若,求线段的长度;(2)如图2,连接.点Q是对角线上的一个动点,若,求的最小值.11.(2023·山东济南·统考二模)如图①,在矩形OABC中,OA=4,OC=3,分别以OC、OA所在的直线为x轴、y轴,建立如图所示的坐标系,连接OB,反比例函数y=(x>0)的图象经过线段OB的中点D,并与矩形的两边交于点E和点F,直线l:y=kx+b经过点E和点F.(1)写出中点D的坐标,并求出反比例函数的解析式;(2)连接OE、OF,求△OEF的面积;(3)如图②,将线段OB绕点O顺时针旋转一定角度,使得点B的对应点H恰好落在x轴的正半轴上,连接BH,作OM⊥BH,点N为线段OM上的一个动点,求HN+ON的最小值.
11.(2023·广西·南宁三中一模)如图,二次函数的图象交轴于点、,交轴于点,点是第四象限内抛物线上的动点,过点作轴交轴于点,线段的延长线交于点,连接、交于点,连接.(1)求二次函数的表达式;(2)当时,求点的坐标及;(3)在(2)的条件下,点是轴上一个动点,求的最小值.13.(2023春·广东揭阳·九年级统考期末)如图,矩形的对角线,相交于点O,关于的对称图形为.
(1)求证:四边形是菱形;(2)连接,若,.①求的值;②若点P为线段上一动点(不与点A重合),连接,一动点Q从点O出发,以的速度沿线段匀速运动到点P,再以的速度沿线段匀速运动到点A,到达点A后停止运动.设点Q沿上述路线运动到点A所需要的时间为t,求t的最小值.14.(2023·吉林长春·统考一模)(1)【问题原型】如图①,在,,,求点到的距离.(2)【问题延伸】如图②,在,,.若点在边上,点在线段上,连结,过点作于,则的最小值为______.(3)【问题拓展】如图(3),在矩形中,.点在边上,点在边上,点在线段上,连结.若,则的最小值为______.15.(2022··达州市九年级期中)如图,矩形的顶点、分别在、轴的正半轴上,点的坐标为,一次函数的图象与边、、轴分别交于点、、,,并且满足,点是线段上的一个动点.(1)求的值;(2)连接,若的面积与四边形的面积之比为,求点的坐标;(3)求的最小值.16.(2022·江苏·统考一模)如图1,平面内有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 头癣的临床护理
- 《教育学术的表达》课件
- 变量与函数说课课件
- 孕期翻身困难的健康宣教
- 【培训课件】营销团队由管理迈向经营
- 颌下腺炎的健康宣教
- 《机械制造基础》课件-05篇 第五单元 超声加工
- 先天性无子宫的健康宣教
- 《高新新认定培训》课件
- JJF(陕) 117-2024 全自动阴离子合成洗涤剂分析仪 校准规范
- 租车协议电子版租车协议电子版
- JGJ92-2016无粘结预应力混凝土结构技术规程
- 人工智能原理与技术智慧树知到期末考试答案章节答案2024年同济大学
- 中外石油文化智慧树知到期末考试答案章节答案2024年中国石油大学(华东)
- GJB9001C-2017管理手册、程序文件及表格汇编
- 中外比较文学研究专题智慧树知到期末考试答案2024年
- 语言表达的修辞解码智慧树知到期末考试答案2024年
- 兽医寄生虫学智慧树知到期末考试答案2024年
- 2022-2023学年北京市西城区人教版五年级上册期末测试数学试卷(无答案和有答案版)
- 家庭教育促进法培训课件
- 工程伦理智慧树知到期末考试答案2024年
评论
0/150
提交评论