版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初中数学几何动点问题中的三角形和四边形存在性问题第一:解题策略在解决几何动点问题中的三角形和四边形存在性问题时,一般有以下几种情况:1.等腰三角形存在性问题:在解等腰三角形存在性问题时,通常设出由动点的运动而处于不断变化的线段的长度为x,其次结合几何图形的性质用x表达出三角形的各个边长,利用等腰三角形的概念,有2条边相等的三角形是等腰三角形,进行分类讨论,找出等量关系,列出方程求解,在解出方程后注意要进行检验。2.直角三角形存在性问题:在解直角三角形存在性问题时,通常设出由动点的运动而处于不断变化的线段的长度为x,其次结合几何图形的性质用x表达出三角形的各个边长,利用勾股定理的逆定理,同时进行分类讨论,找出等量关系,列出方程求解,在解出方程后注意要进行检验。3.全等三角形存在性问题:在解全等三角形存在性问题时,通常设出由动点的运动而处于不断变化的线段的长度为x,其次求出或者用x表示出已知三角形的各边长,然后找出或者用x表示出动态三角形的各边长,最后利用全等三角形的判定定理,建立方程求解,在解出方程后注意要进行检验。4.相似三角形存在性问题:在解相似三角形存在性问题时,通常设出由动点的运动而产生的处于不断变化的线段的长度为x,其次求出或者用x表示出已知三角形的各边长,然后找出或者用x表示出动态三角形的各边长,最后利用相似三角形的判定定理,建立方程求解,在解出方程后注意要进行检验。5.平行四边形的存在性问题:在解平行四边形存在性问题时,通常设出由动点的运动而产生的处于不断变化的线段的长度为x,其次求出或者用x表示出平行四边形、矩形、菱形或正方形的其他各边的长度,最后利用平行四边形、矩形、菱形或正方形的判定定理,建立方程求解,在解出方程后注意要进行检验。可见在解决此类问题时,关键是设出未知数x,并用x表示出各线段的长度,利用各几何图形的判定,列出方程进行求解,是此类题型的共性,但要注意,在解决此类问题时,要注意分类讨论。第二:例题解析例题1、如图,在四边形ABCD中,,角B为直角,,,,动点E从点A出发,在线段AD上以每秒1cm的速度向点D运动,动点F从点C出发,在线段CB上以每秒2cm的速度运动向点B运动,点E、F分别从点A、C同时出发,当点F运动到点B时,点E随之停止运动,设运动的时间为t(秒).(1)用含t的代数式表示DE,______;(2)若四边形EFCD是平行四边形,求此时t的值;(3)是否存在点F,使△FCD是等腰三角形?若存在,请直接写出所有满足要求的t的值;若不存在,请说明理由.【分析】(1)由题意得的cm,即可得出结论.(2)由平行四边形的性质得,再分两种情况,当时,当时,分别求解即可.(3)过D作于G,则四边形ABGD是矩形,得,,再由勾股定理求出,然后分情况讨论:①②,③,由等腰三角形的性质和勾股定理分别求解即可.【详解】(1)解:经过ts后cm,则,,故答案为:.(2)当时,解得:;∵,∴,∴当时四边形EFCD是平行四边形.(3)存在点F,使△FCD是等腰三角形,理由如下:过D作于G,则四边形ABGD是矩形,∴,,∴,在Rt△CDG中,由勾股定理得:分情况讨论:①,如图1,则,解得:;②,如图2,∵,∴,∴,,∴;③,如图3,在RT△FDG中,由勾股定理得:∵,,∴,,解得:,综上所述,存在点F,使△FCD是等腰三角形,t的值为或5或.例题2、如图,已知直线y=x+4与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c经过A,C两点,且与x轴的另一个交点为B,对称轴为直线x=﹣1.(1)求抛物线的表达式;(2)D是第二象限内抛物线上的动点,设点D的横坐标为m,求四边形ABCD面积S的最大值及此时D点的坐标;(3)若点P在抛物线对称轴上,是否存在点P,Q,使以点A,C,P,Q为顶点的四边形是以AC为对角线的菱形?若存在,请求出P,Q两点的坐标;若不存在,请说明理由.【详解】(1)解:当x=0时,y=4,∴C(0,4),当y=0时,x+4=0,∴x=﹣3,∴A(﹣3,0),∵对称轴为直线x=﹣1,∴B(1,0),∴设抛物线的表达式:y=a(x﹣1)•(x+3),∴4=﹣3a,∴a=﹣,∴抛物线的表达式为:y=﹣(x﹣1)•(x+3)=﹣x2﹣x+4;(2)如图1,作DF⊥AB于F,交AC于E,∴D(m,﹣﹣m+4),E(m,m+4),∴DE=﹣﹣m+4﹣(m+4)=﹣m2﹣4m,∴S△ADC=OA=•(﹣m2﹣4m)=﹣2m2﹣6m,∵S△ABC===8,∴S=﹣2m2﹣6m+8=﹣2(m+)2+,∴当m=﹣时,S最大=,当m=﹣时,y=﹣=5,∴D(﹣,5);(3)设P(﹣1,n),∵以A,C,P,Q为顶点的四边形是以AC为对角线的菱形,∴PA=PC,即:PA2=PC2,∴(﹣1+3)2+n2=1+(n﹣4)2,∴n=,∴P(﹣1,),∵xP+xQ=xA+xC,yP+yQ=yA+yC∴xQ=﹣3﹣(﹣1)=﹣2,yQ=4﹣=,∴Q(﹣2,).第三:自主练习1、已知△ABC中,∠ACB=90°,AC=BC=4cm,点P从点A出发,沿AB方向以每秒cm的速度向终点B运动,同时动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,设运动的时间为t秒.(1)如图①,若PQ⊥BC,求t的值;(2)如图②,将△PQC沿BC翻折至△P′QC,当t为何值时,四边形QPCP′为菱形?2、如图,在中,,,,D,E分别是AB,BC边上的动点,以BD为直径的交BC于点F.(1)当时,求证:;(2)当是等腰三角形且是直角三角形时,求AD的长.3、如图,在矩形中,是边上一点,,,垂足为.将四边形绕点顺时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024西瓜产销合同范本
- 2024船舶建造工艺流程船舶建造合同范本
- 2024广州厂房租赁合同样本
- 2024至2030年中国固定铰链数据监测研究报告
- 2023年实验电炉项目综合评估报告
- 2024至2030年中国铬阳极板行业投资前景及策略咨询研究报告
- 2024年美甲工具项目成效分析报告
- 2024至2030年中国肉桂籽粉行业投资前景及策略咨询研究报告
- 2024至2030年中国立式燃煤(双炉排)锅炉数据监测研究报告
- 2024至2030年中国电容器保护单元行业投资前景及策略咨询研究报告
- 学习、弘扬焦裕禄精神
- 小米手机营销商业计划书
- 工程训练(广东工业大学)智慧树知到答案章节测试2023年
- Unit4 Topic2 SectionC课件- 仁爱版八年级英语上册
- GB/T 37524-2019爆炸物现场处置规范
- 2023年Beck自杀意念评估量表
- 六顶思考帽(简版)
- 《幼儿卫生学》配套教学课件
- 刑法课件(第三版)课件 第七章:罪数
- 肝包虫病介绍课件
- SCI论文的写作与发表课件
评论
0/150
提交评论