版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1页(共1页)2023-2024学年山东省日照市东港区曲阜师大附属实验中学八年级(上)月考数学试卷(10月份)一.选择题(12×3=36分)1.(3分)下列长度的三条线段,不能组成三角形的是()A.3,7,5 B.4,8,5 C.3,12,7 D.7,13,82.(3分)能将三角形面积平分的是三角形的()A.角平分线 B.高 C.中线 D.外角平分线3.(3分)将一副常规的三角尺如图放置,则图中∠COD的度数是()A.75° B.95° C.105° D.120°4.(3分)如图,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为点D、点E、点F,△ABC中AC边上的高是()A.CF B.BE C.AD D.CD5.(3分)如图所示,△ABC≌△DEC,∠ACB=60°,∠BCD=100°,点A恰好落在线段ED上,则∠B的度数为()A.50° B.60° C.55° D.65°6.(3分)下列说法错误的是()A.一个三角形中至少有一个角不少于60° B.三角形的中线不可能在三角形的外部 C.三角形的中线把三角形的面积平均分成相等的两部分 D.直角三角形只有一条高7.(3分)如图,AC是△ABC和△ADC的公共边,下列条件中不能判定△ABC≌△ADC的是()A.∠2=∠1,∠B=∠D B.AB=AD,∠3=∠4 C.∠2=∠1,∠3=∠4 D.AB=AD,∠2=∠18.(3分)小明不小心把一块三角形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.① B.② C.③ D.①和②9.(3分)如图,△ABC中,∠B=∠C,∠EDF=α,BD=CF,BE=CD,则下列结论正确的是()A.2α+∠A=180° B.2α+∠A=90° C.α+∠A=90° D.α+∠A=180°10.(3分)已知△ABC是等边三角形,点D、E分别在AC、BC边上,且AD=CE,AE与BD交于点F,则∠AFD的度数为()A.60° B.45° C.75° D.70°11.(3分)已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为()秒时.△ABP和△DCE全等.A.1 B.1或3 C.1或7 D.3或712.(3分)如图,在△ABC中,∠BAC和∠ABC的平分线AE,BF相交于点O,AE交BC于E,BF交AC于F,过点O作OD⊥BC于D,下列三个结论:①∠AOB=90°+∠C;②若AB=4,OD=1,则S△ABO=2;③当∠C=60°时,AF+BE=AB;④若OD=a,AB+BC+CA=2b,则S△ABC=ab.其中正确的个数是()A.1 B.2 C.3 D.4二.填空题(6×4=24分)13.(4分)一个正多边形的一个外角为45°,则它的内角和为.14.(4分)△ABC中,∠A=60°,∠ABC和∠ACB的平分线相交于点P,则∠BPC=.15.(4分)等腰三角形的两边长分别为4和9,该三角形的周长为.16.(4分)如图所示,∠1+∠2+∠3+∠4+∠5+∠6=度.17.(4分)如图,在△ABC中,AD是BC边上的中线,若AB=3cm,AC=5cm,则AD的取值范围是.18.(4分)如图,△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB于E,若AB=10cm,则△DBE的周长等于.三、解答题(共60分)19.(10分)如图,△ABC中,AD⊥BC,AE平分∠BAC,∠B=40°,∠C=60°,求∠DAE的度数.20.(12分)如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.(1)求证:△ABE≌△CBD;(2)证明:∠1=∠3.21.(12分)如图,有一个直角三角形ABC,∠C=90°,AC=20cm,BC=10cm.一条线段PQ=AB、P、Q两点分别在线段AC和过点A且垂直于AC的射线AX上运动,在线段PQ运动过程中,当AP为何值时,能使△ABC和以P、Q、A为顶点的三角形全等.22.(12分)如图,已知:在四边形ABCD中,过C作CE⊥AB于E,并且CD=CB,∠ABC+∠ADC=180°,(1)求证:AC平分∠BAD;(2)若AE=3BE=9,求AD的长;(3)△ABC和△ACD的面积分别为36和24,求△BCE的面积.23.(14分)在△ABC中,AB=AC,E是BC中点,G,H分别为射线BA,AC上一点,且满足∠GEH+∠BAC=180°.(1)如图1,若∠B=45°,且G,H分别在线段BA,AC上,CH=2,求线段AG的长度;(2)在(1)的条件下,如果G,H分别在射线BA,AC上,请问CH与AG还相等吗?请画图并说明理由;(3)如图2,连接AE并延长至点D,使DE=AE,过点E作EF⊥BD于点F,EF的反向延长线与线段BA的延长线交于点G,点H在AC延长线上时,求证:2BF+CH=BG.
2023-2024学年山东省日照市东港区曲阜师大附属实验中学八年级(上)月考数学试卷(10月份)参考答案与试题解析一.选择题(12×3=36分)1.(3分)下列长度的三条线段,不能组成三角形的是()A.3,7,5 B.4,8,5 C.3,12,7 D.7,13,8【分析】根据三角形两边之和大于第三边判断即可.【解答】解:A、∵3+5>7,∴长度为3,7,5的三条线段能组成三角形,本选项不符合题意;B、∵4+5>8,∴长度为4,8,5的三条线段能组成三角形,本选项不符合题意;C、∵3+7<12,∴长度为3,12,7cm的三条线段不能组成三角形,本选项符合题意;D、∵7+8>13,∴长度为7,13,8的三条线段能组成三角形,本选项不符合题意;故选:C.【点评】本题考查的是三角形的三边关系,掌握三角形两边之和大于第三边是解题的关键.2.(3分)能将三角形面积平分的是三角形的()A.角平分线 B.高 C.中线 D.外角平分线【分析】根据三角形的面积公式,只要两个三角形具有等底等高,则两个三角形的面积相等.根据三角形的中线的概念,故能将三角形面积平分的是三角形的中线.【解答】解:根据等底等高可得,能将三角形面积平分的是三角形的中线.故选C.【点评】注意:三角形的中线能将三角形的面积分成相等的两部分.3.(3分)将一副常规的三角尺如图放置,则图中∠COD的度数是()A.75° B.95° C.105° D.120°【分析】求出∠ACO的度数,根据三角形的外角性质得到∠AOB=∠A+∠ACO,代入即可.【解答】解:∵∠ACO=45°﹣30°=15°,∴∠AOB=∠A+∠ACO=90°+15°=105°.∴∠COD=∠AOB=105°.故选:C.【点评】本题主要考查三角形的外角性质,余角和补角,能熟练地运用三角形的外角性质进行计算是解此题的关键.4.(3分)如图,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为点D、点E、点F,△ABC中AC边上的高是()A.CF B.BE C.AD D.CD【分析】从三角形的一个顶点向它的对边引垂线,顶点和垂足间的线段叫做三角形的高.根据此概念求解即可.【解答】解:△ABC中,画AC边上的高,是线段BE.故选:B.【点评】本题考查了三角形的高线的定义,是基础题,准确识图并熟记高线的定义是解题的关键.5.(3分)如图所示,△ABC≌△DEC,∠ACB=60°,∠BCD=100°,点A恰好落在线段ED上,则∠B的度数为()A.50° B.60° C.55° D.65°【分析】根据全等三角形对应角相等可得∠DCE=∠ACB,AC=CD,∠D=∠BAC,求出∠D=∠DAC,然后求出∠ACD,根据三角形内角和定理求出∠D,求出∠BAC,根据三角形内角和定理求出即可.【解答】解:∵△ABC≌△DEC,∴∠DCE=∠ACB=60°,AC=CD,∠D=∠BAC,∴∠D=∠DAC,∵∠BCD=100°,∠ACB=60°,∴∠ACD=∠BCD﹣∠ACB=100°﹣60°=40°,∴∠BAC=∠D=×(180°﹣40°)=70°,∴∠B=180°﹣∠ACB﹣∠BAC=180°﹣70°﹣60°=50°,故选:A.【点评】本题考查了全等三角形对应角相等,对应边相等的性质,也考查了三角形内角和定理等于180°,熟记性质并准确识图,理清图中各角度之间的关系是解题的关键.6.(3分)下列说法错误的是()A.一个三角形中至少有一个角不少于60° B.三角形的中线不可能在三角形的外部 C.三角形的中线把三角形的面积平均分成相等的两部分 D.直角三角形只有一条高【分析】分别根据三角形内角和定理,三角形的角平分线、中线和高对各选项进行逐一分析即可.【解答】解:A、∵三角形的内角和等于180°,∴一个三角形中至少有一个角不少于60°,故本选项正确;B、三角形的中线一定在三角形的内部,故本选项正确;C、三角形的中线把三角形的面积平均分成相等的两部分,故本选项正确;D、直角三角形有三条高,故本选项错误.故选:D.【点评】本题考查了三角形的内角和定理,熟知三角形的内角和等于180°是解答此题的关键.7.(3分)如图,AC是△ABC和△ADC的公共边,下列条件中不能判定△ABC≌△ADC的是()A.∠2=∠1,∠B=∠D B.AB=AD,∠3=∠4 C.∠2=∠1,∠3=∠4 D.AB=AD,∠2=∠1【分析】A、根据AAS即可证出△ABC≌△ADC;B、根据SAS即可证出△ABC≌△ADC;C、根据ASA即可证出△ABC≌△ADC;D、根据SSA无法证出△ABC≌△ADC.此题得解.【解答】解:A、在△ABC和△ADC中,,∴△ABC≌△ADC(AAS);B、在△ABC和△ADC中,,∴△ABC≌△ADC(SAS);C、在△ABC和△ADC中,,∴△ABC≌△ADC(ASA);D、在△ABC和△ADC中,AB=AD,AC=AC,∠2=∠1,∴无法证出△ABC≌△ADC.故选:D.【点评】本题考查了全等三角形的判定,熟练掌握全等三角形的各判定定理是解题的关键.8.(3分)小明不小心把一块三角形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.① B.② C.③ D.①和②【分析】根据全等三角形的判定方法解答即可.【解答】解:带③去可以利用“角边角”得到全等的三角形.故选:C.【点评】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.9.(3分)如图,△ABC中,∠B=∠C,∠EDF=α,BD=CF,BE=CD,则下列结论正确的是()A.2α+∠A=180° B.2α+∠A=90° C.α+∠A=90° D.α+∠A=180°【分析】由△BDE≌△CFD,推出∠BED=∠CDF,由∠EDC=∠B+∠BED=∠EDF+∠FDC,推出∠B=∠EDF=α即可解决问题.【解答】解:在△BDE和△CFD中,,∴△BDE≌△CFD(SAS),∴∠BED=∠CDF,∵∠EDC=∠B+∠BED=∠EDF+∠FDC,∴∠B=∠EDF=α,∵∠B=∠C=α,∴2α+∠A=180°.故选:A.【点评】本题考查了全等三角形的判定和性质以及三角形的内角和定理,是基础知识要熟练掌握.10.(3分)已知△ABC是等边三角形,点D、E分别在AC、BC边上,且AD=CE,AE与BD交于点F,则∠AFD的度数为()A.60° B.45° C.75° D.70°【分析】易证△ABD≌△ACE,可得∠DAF=∠ABF,根据外角等于不相邻两个内角的和即可解题.【解答】解:在△ABD和△ACE中,,∴△ABD≌△ACE(SAS)∴∠DAF=∠ABD,∴∠AFD=∠ABD+∠BAF=∠DAF+∠BAF=∠BAD=60°,故选:A.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ABD≌△ACE是解题的关键.11.(3分)已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为()秒时.△ABP和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【分析】分两种情况进行讨论,根据题意得出BP=2t=2和AP=16﹣2t=2即可求得.【解答】解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=16﹣2t=2,解得t=7.所以,当t的值为1或7秒时.△ABP和△DCE全等.故选:C.【点评】本题考查了全等三角形的判定,判定方法有:ASA,SAS,AAS,SSS,HL.12.(3分)如图,在△ABC中,∠BAC和∠ABC的平分线AE,BF相交于点O,AE交BC于E,BF交AC于F,过点O作OD⊥BC于D,下列三个结论:①∠AOB=90°+∠C;②若AB=4,OD=1,则S△ABO=2;③当∠C=60°时,AF+BE=AB;④若OD=a,AB+BC+CA=2b,则S△ABC=ab.其中正确的个数是()A.1 B.2 C.3 D.4【分析】由角平分线的定义结合三角形的内角和的可求解∠AOB与∠C的关系,进而判定①;过O点作OP⊥AB于P,由角平分线的性质可求解OP=1,再根据三角形的面积公式计算可判定②;在AB上取一点H,使BH=BE,证得△HBO≌△EBO,得到∠BOH=∠BOE=60°,再证得△HAO≌△FAO,得到AF=AH,进而判定③正确;作ON⊥AC于N,OM⊥AB于M,根据三角形的面积可证得④正确.【解答】解:∵∠BAC和∠ABC的平分线相交于点O,∴∠OBA=∠CBA,∠OAB=∠CAB,∴∠AOB=180°﹣∠OBA﹣∠OAB=180°﹣∠CBA﹣∠CAB=180°﹣(180°﹣∠C)=90°+∠C,故①错误;过O点作OP⊥AB于P,∵BF平分∠ABC,OD⊥BC,∴OP=OD=1,∵AB=4,∴S△ABO=AB•OP=,故②正确;∵∠C=60°,∴∠BAC+∠ABC=120°,∵AE,BF分别是∠BAC与ABC的平分线,∴∠OAB+∠OBA=(∠BAC+∠ABC)=60°,∴∠AOB=120°,∴∠AOF=60°,∴∠BOE=60°,如图,在AB上取一点H,使BH=BE,∵BF是∠ABC的角平分线,∴∠HBO=∠EBO,在△HBO和△EBO中,,∴△HBO≌△EBO(SAS),∴∠BOH=∠BOE=60°,∴∠AOH=180°﹣60°﹣60°=60°,∴∠AOH=∠AOF,在△HAO和△FAO中,,∴△HAO≌△FAO(ASA),∴AF=AH,∴AB=BH+AH=BE+AF,故③正确;作ON⊥AC于N,OM⊥AB于M,∵∠BAC和∠ABC的平分线相交于点O,∴点O在∠C的平分线上,∴ON=OM=OD=a,∵AB+AC+BC=2b,∴S△ABC=×AB×OM+×AC×ON+×BC×OD=(AB+AC+BC)•a=ab,故④正确.故选:C.【点评】本题主要考查了三角形内角和定理,三角形外角的性质,三角形全等的性质和判定,正确作出辅助线证得△HBO≌△EBO,得到∠BOH=∠BOE=60°,是解决问题的关键.二.填空题(6×4=24分)13.(4分)一个正多边形的一个外角为45°,则它的内角和为1080°.【分析】由一个正多边形的一个外角为45°,可知这个多边形为8边形,再利用多边形的内角和公式即可.【解答】解:∵多边形的外角和为360°,正多边形的一个外角为45°,∴边数n=360÷45=8,∴多边形的内角和=(8﹣2)×180=1080°故答案为:1080°.【点评】本题考查了多边形的内角和公式和外角和为360°的知识点,同时还运用了正多边形的知识.14.(4分)△ABC中,∠A=60°,∠ABC和∠ACB的平分线相交于点P,则∠BPC=120°.【分析】根据三角形的内角和等于180°求出∠ABC+∠ACB,再根据角平分线的定义求出∠PBC+∠PCB,然后利用三角形的内角和等于180°列式计算即可得解.【解答】解:∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵∠ABC与∠ACB的角平分线相交于P,∴∠PBC+∠PCB=(∠ABC+∠ACB)=×120°=60°,在△PBC中,∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣60°=120°.故答案为:120°.【点评】本题考查了三角形的内角和定理,熟知三角形的内角和等于180°是解答此题的关键.15.(4分)等腰三角形的两边长分别为4和9,该三角形的周长为22.【分析】分类讨论:9为腰长,9为底边长,根据三角形的周长公式,可得答案.【解答】解:分两种情况:①当4为底边长,9为腰长时,4+9>9,∴三角形的周长=4+9+9=22;②当9为底边长,4为腰长时,∵4+4<9,∴不能构成三角形;∴这个三角形的周长是22.故答案为:22.【点评】本题考查了等腰三角形的性质、三角形的三边关系;熟练掌握等腰三角形的性质,通过进行分类讨论得出结果是解决问题的关键.16.(4分)如图所示,∠1+∠2+∠3+∠4+∠5+∠6=360度.【分析】分析图形,根据“三角形的外角等于与它不相邻的两个内角和”可知能把,∠1,∠2,∠3,∠4,∠5,∠6全部转化到∠2,∠3所在的四边形中,利用四边形内角和为360度可得答案.【解答】解:如图所示,∵∠1+∠5=∠8,∠4+∠6=∠7,又∵∠2+∠3+∠7+∠8=360°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°【点评】主要考查了三角形的内角和外角之间的关系及四边形内角和定理,(1)三角形的外角等于与它不相邻的两个内角和;(2)四边形内角和为360°.17.(4分)如图,在△ABC中,AD是BC边上的中线,若AB=3cm,AC=5cm,则AD的取值范围是1cm<AD<4cm.【分析】延长AD到E,使DE=AD,连接BE,利用“边角边”证明△ACD和△EBD全等,根据全等三角形对应边相等可得BE=AC,再利用三角形的任意两边之和大于第三边,任意两边之差小于第三边求出AE的取值范围,然后求解即可.【解答】解:如图,延长AD到E,使DE=AD,连接BE,∵AD是BC边上的中线,∴BD=CD,在△ACD和△EBD中,,∴△ACD≌△EBD(SAS),∴BE=AC,由三角形三边关系得,5﹣3<AE<5+3,即2cm<AE<8cm,∴1cm<AD<4cm.故答案为:1cm<AD<4cm.【点评】本题考查了全等三角形的判定与性质,三角形的三边关系,“遇中线,加倍延”作辅助线构造出全等三角形是解题的关键,也是本题的难点.18.(4分)如图,△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB于E,若AB=10cm,则△DBE的周长等于10cm.【分析】根据角平分线性质求出CD=DE,根据勾股定理求出AC=AE=AB,求出BD+DE=AE,即可求出答案.【解答】解:∵AD平分∠CAB,∠C=90°,DE⊥AB,∴CD=DE,由勾股定理得:,,∴AE=AC=BC,∴DE+BD=CD+BE=BC,∵AC=BC,∴BD+DE=AC=AE,∴△BDE的周长是BD+DE+BE=AE+BE=AB=10(cm).故答案为:10cm.【点评】本题考查了勾股定理,角平分线性质,等腰直角三角形,垂线等知识点的应用,关键是求出AE=AC=BC,CD=DE,通过做此题培养了学生利用定理进行推理的能力.三、解答题(共60分)19.(10分)如图,△ABC中,AD⊥BC,AE平分∠BAC,∠B=40°,∠C=60°,求∠DAE的度数.【分析】先根据三角形内角和定理求出∠BAC的度数,由角平分线的定义求出∠CAE的度数,再根据直角三角形的性质求出∠CAD的度数,进而可得出结论.【解答】解:∵∠B=40°,∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=80°,∵AE平分∠BAC,∴∠BAE=∠BAC=40°,∴∠AEC=∠B+∠BAE=80°,∵AD⊥BC,∴∠ADE=90°,∴∠DAE=180°﹣∠ADE﹣∠AED=10°.答:∠DAE的度数是10°.【点评】本题考查的是三角形内角和定理及角平分线的性质,熟知三角形的内角和是180°是解答此题的关键.20.(12分)如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.(1)求证:△ABE≌△CBD;(2)证明:∠1=∠3.【分析】(1)根据等式的性质得∠ABE=∠CBD,再利用SAS即可证明结论成立;(2)根据全等三角形的对应角相等得∠A=∠C,对顶角相等得∠AFB=∠CFE,利用三角形内角和定理可得结论.【解答】证明:(1)∵∠1=∠2.∴∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);(2)由第一小问得△ABE≌△CBD,∴∠A=∠C,∵∠AFB=∠CFE,∴∠1=∠3.【点评】本题主要考查了全等三角形的判定与性质,三角形的内角和定理等知识,熟练掌握全等三角形的判定与性质是解题的关键.21.(12分)如图,有一个直角三角形ABC,∠C=90°,AC=20cm,BC=10cm.一条线段PQ=AB、P、Q两点分别在线段AC和过点A且垂直于AC的射线AX上运动,在线段PQ运动过程中,当AP为何值时,能使△ABC和以P、Q、A为顶点的三角形全等.【分析】分两种情形分别求解即可.【解答】解:当AP=5时,Rt△ABC≌Rt△QPA,理由是:∵∠C=90°,AQ⊥AC,∴∠C=∠QAP=90°,当AP=5=BC时,在Rt△ABC和Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL),当AP=AC=20,AQ=BC=10时,△ABC≌△PQA.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.22.(12分)如图,已知:在四边形ABCD中,过C作CE⊥AB于E,并且CD=CB,∠ABC+∠ADC=180°,(1)求证:AC平分∠BAD;(2)若AE=3BE=9,求AD的长;(3)△ABC和△ACD的面积分别为36和24,求△BCE的面积.【分析】(1)作CF⊥AD的延长线于F,再由条件就可以得出△CDF≌△CEB,就可以得出CF=CE,从而得出结论;(2)先△CAF≌△CBE就可以得出AF=AE,DF=BE,就可以求出AF和DF的值从而得出结论;(3)设△BCE的面积为x,由△CAF≌△CAE就可以得出S△CAF=S△CAE,就可以建立方程24+x=36﹣x,求出其解即可.【解答】解:(1)作CF⊥AD的延长线于F,∴∠F=90°.∵CE⊥AB,∴∠CEA=∠CEB=90°,∴∠F=∠CEA=∠CEB.∵∠ADC+∠CDF=180°,且∠ABC+∠ADC=180°∴∠CDF=∠B.在△CDF和△CEB中,∴△CDF≌△CEB(AAS),∴CF=CE.∵CF⊥AD,CE⊥AB,∴AC平分∠BAD;(2)在Rt△CAF和Rt△CAE中,∴Rt△CAF≌Rt△CAE(HL),∴AF=AE.∵△CDF≌△CEB,∴DF=EB.∵3BE=9,∴BE=3,∴DF=3.∵AD=AF﹣DF,∴AD=AE﹣DF.∵AE=9,∴AD=9﹣3=6;(3)∵△CAF≌△CAE,△CDF≌△CEB,∴S△CAF=S△CAE,S△CDF=S△CEB.设△BCE的面积为x,则△CDF的面积为x,由题意,得24+x=36﹣x,∴x=6,答:△BCE的面积为6.【点评】本题考查了全等三角形的判定与性质的运用,角平分线的判定及性质的运用,三角形的面积公式的运用,一元一次方程的运用,解答时证明三角形全等是关键.23.(14分)在△ABC中,AB=AC,E是BC中点,G,H分别为射线BA,AC上一点,且满足∠GEH+∠BAC=180°.(1)如图1,若∠B=45°,且G,H分别在线段BA,AC上,CH=2,求线段AG的长度;(2)在(1)的条件下,如果G,H分别在射线BA,AC上,请问CH与AG还
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新型印刷材料在印刷工艺中的应用考核试卷
- 油田动态监测安全监督及工作要求考核试卷
- 未来能源技术可再生能源与能源存储创新考核试卷
- 煤炭行业的投资与融资机制考核试卷
- 地质勘查设备生物质能源利用考核试卷
- DB11∕T 3015-2018 水产品冷链物流操作规程
- 美术入门课件教学课件
- 植物盆栽课件教学课件
- 课件不兼容教学课件
- 淮阴工学院《交通运输工程学1》2021-2022学年第一学期期末试卷
- 2024年10月时政100题(附答案)
- 学生校外托管协议书
- 建筑幕墙施工方案
- 第二章 地图(考点串讲课件)七年级地理上学期期中考点大串讲(人教版2024)
- 2024年健身房管理制度(六篇)
- 期中测试卷(1-4单元)(试题)-2024-2025学年人教版数学六年级上册
- 车辆绿本抵押借款合同
- 意识形态分析研判制度
- GB/T 18029.6-2024轮椅车第6 部分:电动轮椅车最大速度的测定
- 2024至2030年中国学前教育(幼儿园)行业研究报告
- 统编版(2024新版)七年级上册《道德与法治》第1-13课全册教材“活动课”参考答案
评论
0/150
提交评论