版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章集合与常用逻辑用语、不等式时间:120分钟分值:150分第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.(2023·全国·校联考模拟预测)已知集合,,则(
)A. B.C. D.2.(2023·四川巴中·南江中学校考模拟预测)已知集合,,则(
)A. B.C. D.3.(2023·湖北·统考二模)已知集合,,且全集,则(
)A. B. C. D.4.(2023·青海西宁·统考一模)已知命题,,则p的否定为(
)A. B.C. D.5.(2023·江西·校联考二模)“”的一个充分条件可以是(
)A. B.C. D.6.(2023·全国·高三专题练习)某小学对小学生的课外活动进行了调查.调查结果显示:参加舞蹈课外活动的有63人,参加唱歌课外活动的有89人,参加体育课外活动的有47人,三种课外活动都参加的有24人,只选择两种课外活动参加的有46人,不参加其中任何一种课外活动的有15人.问接受调查的小学生共有多少人?(
)A.120 B.144 C.177 D.1927.(2023·广西南宁·南宁三中校考模拟预测)已知实数,满足,则的最小值为(
)A. B. C. D.8.(2023·宁夏中卫·统考二模)已知点在直线上,若关于的不等式恒成立,则实数的取值范围为(
)A. B.C. D.二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。9.(2023·广东深圳·高三深圳外国语学校校考阶段练习)已知:,恒成立;:,恒成立.则(
)A.“”是的充分不必要条件 B.“”是的必要不充分条件C.“”是的充分不必要条件 D.“”是的必要不充分条件10.(2023·全国·高三专题练习)图中阴影部分用集合符号可以表示为(
)A. B.C. D.11.(2023·全国·高三专题练习)已知集合有且仅有两个子集,则下面正确的是(
)A.B.C.若不等式的解集为,则D.若不等式的解集为,且,则12.(2023·重庆九龙坡·统考二模)若a,b,c都是正数,且则(
)A. B. C. D.第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分。13.(2023·上海浦东新·高三上海市进才中学校考阶段练习)已知集合,集合.如果,则实数的取值范围是___________.14.(2023·山西运城·统考三模)若命题“,”为真命题,则实数的取值范围为___________.(用区间表示)15.(2023·湖南长沙·高三校联考期中)若一个非空数集满足:对任意,有,,,且当时,有,则称为一个数域,以下命题中:(1)0是任何数域的元素;(2)若数域有非零元素,则;(3)集合为数域;(4)有理数集为数域;真命题的个数为________16.(2023·全国·高三专题练习)设且,,则的范围为______________.四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步棸。17.(10分)(2023·河南许昌·高三校考期末)已知集合,.(1)求A;(2)若“x∈A”是“x∈B”的充分不必要条件,求m的取值范围.18.(12分)(2023·重庆酉阳·重庆市酉阳第一中学校校考一模)命题:任意,成立;命题:存在,+成立.(1)若命题为假命题,求实数的取值范围;(2)若命题和有且只有一个为真命题,求实数的取值范围.19.(12分)(2023·高一单元测试)已知集合.(1)若集合,且,求的值;(2)若集合,且与有包含关系,求的取值范围.20.(12分)(2023·上海·高三专题练习)某研究所开发了一种抗病毒新药,用小白鼠进行抗病毒实验.已知小白鼠服用1粒药后,每毫升血液含药量(微克)随着时间(小时)变化的函数关系式近似为.当每毫升血液含药量不低于4微克时,该药能起到有效抗病毒的效果.(1)若小白鼠服用1粒药,多长时间后该药能起到有效抗病毒的效果?(2)某次实验:先给小白鼠服用1粒药,6小时后再服用1粒,请问这次实验该药能够有效抗病毒的时间为多少小时?21.(12分)(2023·江西吉安·统考一模)已均为正数,且,证明:(1);(2).22.(12分)(2023·全国·高三专题练习)已知函数,当时,设的最大值为,求的最小值.第一章集合与常用逻辑用语、不等式时间:120分钟分值:150分第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.(2023·全国·校联考模拟预测)已知集合,,则(
)A. B.C. D.【答案】D【解析】要使函数有意义,则有,解得或,所以或,由,得,所以.故选:D.2.(2023·四川巴中·南江中学校考模拟预测)已知集合,,则(
)A. B.C. D.【答案】B【解析】由,得,即,由,得或,即,所以.故选:B.3.(2023·湖北·统考二模)已知集合,,且全集,则(
)A. B. C. D.【答案】D【解析】由已知得集合表示的区间为,集合表示的区间为,则,,,,故选:.4.(2023·青海西宁·统考一模)已知命题,,则p的否定为(
)A. B.C. D.【答案】A【解析】由存在量词命题的否定为全称量词命题,得p的否定为.故选:A.5.(2023·江西·校联考二模)“”的一个充分条件可以是(
)A. B.C. D.【答案】D【解析】由,即,所以对选项A,当,时,,但不满足,故A不正确,选项B,由,则,则或,故B项不正确,选项C,,则或,故C不正确,选项D,由知,所以,成立,故D正确,故选:D.6.(2023·全国·高三专题练习)某小学对小学生的课外活动进行了调查.调查结果显示:参加舞蹈课外活动的有63人,参加唱歌课外活动的有89人,参加体育课外活动的有47人,三种课外活动都参加的有24人,只选择两种课外活动参加的有46人,不参加其中任何一种课外活动的有15人.问接受调查的小学生共有多少人?(
)A.120 B.144 C.177 D.192【答案】A【解析】如图所示,用韦恩图表示题设中的集合关系,不妨将参加舞蹈、唱歌、体育课外活动的小学生分别用集合表示,则不妨设总人数为,韦恩图中三块区域的人数分别为即由容斥原理:解得:故选:A7.(2023·广西南宁·南宁三中校考模拟预测)已知实数,满足,则的最小值为(
)A. B. C. D.【答案】A【解析】,当且仅当时等号成立,所以的最小值为.故选:A.8.(2023·宁夏中卫·统考二模)已知点在直线上,若关于的不等式恒成立,则实数的取值范围为(
)A. B.C. D.【答案】A【解析】因为点在直线上,所以,故,当且仅当且,即时等号成立,因为关于的不等式恒成立,所以,解得,所以.故选:A二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。9.(2023·广东深圳·高三深圳外国语学校校考阶段练习)已知:,恒成立;:,恒成立.则(
)A.“”是的充分不必要条件 B.“”是的必要不充分条件C.“”是的充分不必要条件 D.“”是的必要不充分条件【答案】BC【解析】已知:,恒成立,则方程无实根,所以恒成立,即,故“”是的必要不充分条件,故A错误,B正确;又:,恒成立,所以在时恒成立,又函数的最大值为,所以,故“”是的充分不必要条件,故C正确,D错误.故选:BC.10.(2023·全国·高三专题练习)图中阴影部分用集合符号可以表示为(
)A. B.C. D.【答案】AD【解析】如图,在阴影部分区域内任取一个元素,则或,所以阴影部分所表示的集合为,再根据集合的运算可知,阴影部分所表示的集合也可表示为,所以选项AD正确,选项CD不正确,故选:AD.11.(2023·全国·高三专题练习)已知集合有且仅有两个子集,则下面正确的是(
)A.B.C.若不等式的解集为,则D.若不等式的解集为,且,则【答案】ABD【解析】由于集合有且仅有两个子集,所以,由于,所以.A,,当时等号成立,故A正确.B,,当且仅当时等号成立,故B正确.C,不等式的解集为,,故C错误.D,不等式的解集为,即不等式的解集为,且,则,则,,故D正确,故选:ABD12.(2023·重庆九龙坡·统考二模)若a,b,c都是正数,且则(
)A. B. C. D.【答案】BCD【解析】设,则,,,,,,所以,,因为,所以,则等号不成立,所以,则,因为,所以,故选:BCD第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分。13.(2023·上海浦东新·高三上海市进才中学校考阶段练习)已知集合,集合.如果,则实数的取值范围是___________.【答案】【解析】由解得,所以,所以,由于,所以.故答案为:.14.(2023·山西运城·统考三模)若命题“,”为真命题,则实数的取值范围为___________.(用区间表示)【答案】【解析】因为,即函数的值域为,所以实数的取值范围为.故答案为:15.(2023·湖南长沙·高三校联考期中)若一个非空数集满足:对任意,有,,,且当时,有,则称为一个数域,以下命题中:(1)0是任何数域的元素;(2)若数域有非零元素,则;(3)集合为数域;(4)有理数集为数域;真命题的个数为________【答案】3【解析】(1)当时,属于数域,故(1)正确,(2)若数域有非零元素,则,从而,故(2)正确;(3)由集合的表示可知得是3的倍数,当时,,故(3)错误,(4)若是有理数集,则当,,则,,,且当时,”都成立,故(4)正确,故真命题的个数是3.故答案为:316.(2023·全国·高三专题练习)设且,,则的范围为______________.【答案】【解析】由且,得,,且①,又因为,可得②,由①②可知:,是方程的两个不等的实根,于是,解得:,且,则,则,所以的范围为.故答案为:.四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步棸。17.(10分)(2023·河南许昌·高三校考期末)已知集合,.(1)求A;(2)若“x∈A”是“x∈B”的充分不必要条件,求m的取值范围.【解析】(1)由,可得,所以,所以集合.(2)若“”是“”的充分不必要条件,则集合是集合的真子集,由集合不是空集,故集合也不是空集,所以,当时,满足题意,当时,满足题意,故,即m的取值范围为.18.(12分)(2023·重庆酉阳·重庆市酉阳第一中学校校考一模)命题:任意,成立;命题:存在,+成立.(1)若命题为假命题,求实数的取值范围;(2)若命题和有且只有一个为真命题,求实数的取值范围.【解析】(1)由q真:,得或,所以q假:;(2)p真:推出,由和有且只有一个为真命题,真假,或假真,或,或或.19.(12分)(2023·高一单元测试)已知集合.(1)若集合,且,求的值;(2)若集合,且与有包含关系,求的取值范围.【解析】(1)因为,且,所以或,解得或,故.(2)因为A与C有包含关系,,至多只有两个元素,所以.当时,,满足题意;当时,当时,,解得,满足题意;当时,且,此时无解;当时,且,此时无解;当时,且,此时无解;综上,a的取值范围为.20.(12分)(2023·上海·高三专题练习)某研究所开发了一种抗病毒新药,用小白鼠进行抗病毒实验.已知小白鼠服用1粒药后,每毫升血液含药量(微克)随着时间(小时)变化的函数关系式近似为.当每毫升血液含药量不低于4微克时,该药能起到有效抗病毒的效果.(1)若小白鼠服用1粒药,多长时间后该药能起到有效抗病毒的效果?(2)某次实验:先给小白鼠服用1粒药,6小时后再服用1粒,请问这次实验该药能够有效抗病毒的时间为多少小时?【解析】(1)设服用1粒药,经过小时能有效抗病毒,即血液含药量须不低于4微克,可得,
解得,
所以小时后该药能起到有效抗病毒的效果.(2)设经过小时能有效抗病毒,即血液含药量须不低于4微克;若,药物浓度,
解得,
若,药物浓度,
化简得,所以;
若,药物浓度,
解得,所以;
综上,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版果树病虫害防治与种植承包合同3篇
- 影视项目2025年度演员选角服务合同2篇
- 二零二五版餐饮业与旅行社跨界融合合同3篇
- 二零二五版电力设施拆除与再利用合同模板3篇
- 安徽省二零二五年度事业单位图书馆管理员聘用合同3篇
- 二零二五版集体房屋买卖合同及社区文化活动服务协议3篇
- 二零二五年度高端酒水品牌对外承包经营合同范本3篇
- 二零二五年度高速公路收费员劳动合同解除与补偿标准合同3篇
- 二零二五版果园租赁与农业循环经济合同2篇
- 二零二五版广告创意策划执行合同3篇
- 给男友的道歉信10000字(十二篇)
- 2020年高级统计实务与案例分析真题及答案
- 全面质量管理(TQM)基本知识
- 练字本方格模板
- 产品供货质量保障措施
- 电力电缆高频局放试验报告
- 《老山界》第1第2课时示范公开课教学PPT课件【统编人教版七年级语文下册】
- JJG 517-2016出租汽车计价器
- JJF 1914-2021金相显微镜校准规范
- GB/T 32045-2015节能量测量和验证实施指南
- GB/T 10001.6-2021公共信息图形符号第6部分:医疗保健符号
评论
0/150
提交评论