下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、集合与函数1.已知集合A={x|2<x≤3},B={x|2≤x<5},求A∩B。2.设函数f(x)=x²2x+1,求f(x)在区间[0,2]上的最大值和最小值。3.已知函数g(x)=|x1|,求g(x)的单调区间。4.判断函数h(x)=x³3x在实数集上的单调性。二、三角函数与解三角形1.已知sinα=3/5,α为第二象限角,求cosα和tanα。2.求解方程sin²x2sinx+1=0。3.在△ABC中,a=8,b=10,C=120°,求c的长度。4.已知cosθ=1/2,求2θ的取值范围。三、数列1.已知数列{an}的通项公式为an=n²n,求前n项和。2.判断数列{bn}是否为等比数列,其中bn=3n+1。3.已知数列{cn}为等差数列,c1=1,c3=3,求通项公式。4.求解数列{dn}的通项公式,其中dn=2dn1+1,d1=1。四、平面向量与立体几何1.已知向量a=(2,3),求向量a的模。2.已知向量b=(4,3),求向量a和向量b的夹角。3.在空间直角坐标系中,点A(1,2,3),点B(4,1,6),求向量AB的坐标。4.判断平面α:x+y+z=1与平面β:2xy+3z=4是否平行。五、解析几何1.在直角坐标系中,求直线y=2x+1与圆(x2)²+(y3)²=16的交点。2.已知椭圆方程x²/4+y²/3=1,求椭圆的焦点坐标。3.在平面直角坐标系中,求抛物线y=x²4x+3的顶点坐标。4.已知双曲线方程x²/9y²/16=1,求双曲线的实轴和虚轴长度。六、概率与统计1.从1到100的整数中随机抽取一个数,求这个数是3的倍数的概率。2.已知一组数据的平均数为50,标准差为5,求这组数据中大于60的数的个数。3.投掷一枚硬币三次,求恰好出现两次正面朝上的概率。4.已知某班级学生的身高服从正态分布,平均身高为160cm,标准差为10cm,求身高在150cm至170cm之间的学生所占比例。七、导数与微分1.已知函数f(x)=x^33x,求f'(x)。2.求函数g(x)=e^xsin(x)在x=0处的导数。3.已知曲线y=x^2+2x+1在点(1,4)处的切线方程。4.判断函数h(x)=x^24x+3的单调性,并求其极值。八、复数与复变函数1.已知复数z=3+4i,求z的模和辐角。2.计算复数(1+i)^2的值。3.已知复数w=2i,求w的共轭复数。4.解复数方程z^2+(32i)z+4=0。九、线性代数1.已知矩阵A=\(\begin{pmatrix}1&2\\3&4\end{pmatrix}\),求矩阵A的行列式。2.已知向量组α1=(1,2,3),α2=(2,3,4),α3=(3,4,5),判断这三个向量是否线性相关。3.解线性方程组:\(\begin{cases}2x+3yz=5\\xy+2z=3\\3x+2y+z=7\end{cases}\)4.已知矩阵B=\(\begin{pmatrix}4&2\\1&3\end{pmatrix}\),求矩阵B的逆矩阵。十、排列组合与概率1.从5个男生和3个女生中选出3人参加比赛,求所有可能的选法。2.有6本不同的书,分给3个人,每人至少得到一本,求分配方法的总数。3.从数字1到9中任选三个数字组成一个三位数,求这个三位数是3的倍数的概率。4.有4个红球,3个蓝球,2个绿球,从中随机抽取3个球,求恰好抽到2个红球的概率。答案一、集合与函数1.A∩B={x|2≤x≤3}2.最大值:1,最小值:13.单调递增区间:[1,+∞),单调递减区间:(∞,1]4.单调递增区间:[0,+∞),单调递减区间:(∞,0]二、三角函数与解三角形1.cosα=4/5,tanα=3/42.sinx=13.c≈6.714.2θ的取值范围:[2π/3,4π/3]三、数列1.前n项和:n(n1)(2n1)/62.不是等比数列3.通项公式:cn=n4.通项公式:dn=2^n1四、平面向量与立体几何1.|a|=√(2²+3²)=√132.夹角θ≈53.13°3.向量AB的坐标:AB=(3,3,3)4.不平行五、解析几何1.交点:(1,1)和(3,7)2.焦点坐标:F1(√5,0),F2(√5,0)3.顶点坐标:(2,1)4.实轴长度:2√5,虚轴长度:4六、概率与统计1.概率:1/32.无法确定,需要更多信息3.概率:3/84.比例:约68.27%七、导数与微分1.f'(x)=3x^232.g'(0)=13.切线方程:y4=5(x1)4.单调递减区间:(∞,1),单调递增区间:(1,+∞),极小值:4八、复数与复变函数1.模:5,辐角:arctan(4/3)2.(1+i)^2=2i3.共轭复数:2+i4.z=1±i九、线性代数1.行列式:22.线性相关3.解:x=2,y=1,z=14.逆矩
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度建筑工程材料采购与施工合同范本
- 04年网络安全维护合同
- 汽水制造机市场发展现状调查及供需格局分析预测报告
- 2024年度幼儿园特色课程开发合同
- 2024年度技术服务合同标的为云计算服务
- 2024年度保障性住房租赁合同优惠政策
- 编码和解码装置市场发展现状调查及供需格局分析预测报告
- 2024年度企业形象设计及推广合同
- 2024年度供应链管理系统开发及运维合同
- 04版智能托盘研发与租赁合同
- 家长会课件:小学语文二年级家长会课件
- 我的家乡江苏徐州城市介绍课件
- 2024年浙江长兴经济发展集团有限公司招聘笔试冲刺题(带答案解析)
- 《化工和危险化学品生产经营单位重大生产安全事故隐患判定标准(试行)》解读课件
- 走进民航智慧树知到期末考试答案2024年
- 小学上放学安全教育
- 铰刀解析课件
- 入河(湖、库)排放口分类与管理导则
- 培训机构应急预案管理制度
- 2024年日历表含农历 周数(A4纸打印版)
- 生物多样性保护与生态旅游
评论
0/150
提交评论