版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省郑州市高新区重点名校2025年初三下学期4月考数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若关于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一个根为1,则m的值为A.1 B.3 C.0 D.1或32.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85° B.75° C.60° D.30°3.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是()A. B. C. D.4.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-25.如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A. B. C. D.6.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A.0.7×10﹣8 B.7×10﹣8 C.7×10﹣9 D.7×10﹣107.下列计算正确的是()A.(﹣8)﹣8=0 B.3+3=33 C.(﹣3b)2=9b2 D.a6÷a2=a38.分式方程=1的解为()A.x=1 B.x=0 C.x=﹣ D.x=﹣19.如图,点A、B、C在圆O上,若∠OBC=40°,则∠A的度数为()A.40° B.45° C.50° D.55°10.下列各组数中,互为相反数的是()A.﹣1与(﹣1)2 B.(﹣1)2与1 C.2与 D.2与|﹣2|11.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为()A.(﹣) B.(﹣) C.(﹣) D.(﹣)12.某大型企业员工总数为28600人,数据“28600”用科学记数法可表示为()A.0.286×105B.2.86×105C.28.6×103D.2.86×104二、填空题:(本大题共6个小题,每小题4分,共24分.)13.三个小伙伴各出资a元,共同购买了价格为b元的一个篮球,还剩下一点钱,则剩余金额为__元(用含a、b的代数式表示)14.如图,AB为⊙0的弦,AB=6,点C是⊙0上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是______________.15.有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是__.16.将161000用科学记数法表示为1.61×10n,则n的值为________.17.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=15米,那么该古城墙的高度CD是_____米.18.分解因式:x2–4x+4=__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)共抽取名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;(3)该校共有3000名学生,请估计全校学生喜欢足球运动的人数.(4)甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率.20.(6分)先化简,再求值:,其中a满足a2+2a﹣1=1.21.(6分)《九章算术》中有这样一道题,原文如下:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为;若甲把其的钱给乙,则乙的钱数也能为,问甲、乙各有多少钱?请解答上述问题.22.(8分)近几年“雾霾”成为全社会关注的话题某校环保志愿者小组对该市2018年空气质量进行调查,从全年365天中随机抽查了50天的空气质量指数(AQI),得到以下数据:43、62、80、78、46、78、23、59、32、78、86、125、98、116、86、69、28、43、58、87、75、116、178、146、57、26、43、59、77、103、126、159、201、289、315、253、196、102、93、72、56、43、39、44、47、34、31、29、43、1.(1)请你完成如下的统计表;AQI0~5051~100101~150151~200201~250300以上质量等级A(优)B(良)C(轻度污染)D(中度污染)E(重度污染)F(严重污染)天数(2)请你根据题中所给信息绘制该市2018年空气质量等级条形统计图;(3)请你估计该市全年空气质量等级为“重度污染”和“严重污染”的天数.23.(8分)计算:(-)-2–2()+24.(10分)已知△ABC内接于⊙O,AD平分∠BAC.(1)如图1,求证:;(2)如图2,当BC为直径时,作BE⊥AD于点E,CF⊥AD于点F,求证:DE=AF;(3)如图3,在(2)的条件下,延长BE交⊙O于点G,连接OE,若EF=2EG,AC=2,求OE的长.25.(10分)某工厂计划生产,两种产品共10件,其生产成本和利润如下表.种产品种产品成本(万元件)25利润(万元件)13(1)若工厂计划获利14万元,问,两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获利多于22万元,问工厂有哪几种生产方案?26.(12分)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:天数(x)13610每件成本p(元)7.58.51012任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=,设李师傅第x天创造的产品利润为W元.直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:求李师傅第几天创造的利润最大?最大利润是多少元?任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?27.(12分)如图,在△ABC中,∠ABC=90°,BD为AC边上的中线.(1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C作直线CE,使CE⊥BC于点C,交BD的延长线于点E,连接AE;(2)求证:四边形ABCE是矩形.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】
直接把x=1代入已知方程即可得到关于m的方程,解方程即可求出m的值.【详解】∵x=1是方程(m﹣1)x2+x+m2﹣5m+3=0的一个根,∴(m﹣1)+1+m2﹣5m+3=0,∴m2﹣4m+3=0,∴m=1或m=3,但当m=1时方程的二次项系数为0,∴m=3.故答案选B.本题考查了一元二次方程的解,解题的关键是熟练的掌握一元二次方程的运算.2、B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.详解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选B.点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.3、A【解析】由题意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.则y=2x,为正比例函数.故选A.4、A【解析】试题分析:根据函数图象右移减、左移加,上移加、下移减,可得答案.解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是y=(x﹣1)2+2,故选A.考点:二次函数图象与几何变换.5、B【解析】
由题意可知,当时,;当时,;当时,.∵时,;时,.∴结合函数解析式,可知选项B正确.考点:1.动点问题的函数图象;2.三角形的面积.6、C【解析】
本题根据科学记数法进行计算.【详解】因为科学记数法的标准形式为a×(1≤|a|≤10且n为整数),因此0.000000007用科学记数法法可表示为7×,故选C.本题主要考察了科学记数法,熟练掌握科学记数法是本题解题的关键.7、C【解析】选项A,原式=-16;选项B,不能够合并;选项C,原式=9b2;选项D,原式=8、C【解析】
首先找出分式的最简公分母,进而去分母,再解分式方程即可.【详解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-,检验:当x=-时,(x+1)2≠0,故x=-是原方程的根.故选C.此题主要考查了解分式方程的解法,正确掌握解题方法是解题关键.9、C【解析】
根据等腰三角形的性质和三角形内角和定理求得∠BOC=100°,再利用圆周角定理得到∠A=12【详解】∵OB=OC,
∴∠OBC=∠OCB.
又∠OBC=40°,
∴∠OBC=∠OCB=40°,
∴∠BOC=180°-2×40°=100°,
∴∠A=12考查了圆周角定理.在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半.10、A【解析】
根据相反数的定义,对每个选项进行判断即可.【详解】解:A、(﹣1)2=1,1与﹣1互为相反数,正确;B、(﹣1)2=1,故错误;C、2与互为倒数,故错误;D、2=|﹣2|,故错误;故选:A.本题考查了相反数的定义,解题的关键是掌握相反数的定义.11、A【解析】
直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【详解】过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,则△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴设NO=1x,则NC1=4x,OC1=1,则(1x)2+(4x)2=9,解得:x=±(负数舍去),则NO=,NC1=,故点C的对应点C1的坐标为:(-,).故选A.此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.12、D【解析】
用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可【详解】28600=2.86×1.故选D.此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分.)13、(3a﹣b)【解析】解:由题意可得,剩余金额为:(3a-b)元,故答案为:(3a-b).点睛:本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.14、3【解析】
根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.【详解】解:因为点M、N分别是AB、BC的中点,由三角形的中位线可知:MN=AC,所以当AC最大为直径时,MN最大.这时∠B=90°又因为∠ACB=45°,AB=6解得AC=6MN长的最大值是3.故答案为:3.本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.15、【解析】
列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率.【详解】解:列表如下:567895﹣﹣﹣(6、5)(7、5)(8、5)(9、5)6(5、6)﹣﹣﹣(7、6)(8、6)(9、6)7(5、7)(6、7)﹣﹣﹣(8、7)(9、7)8(5、8)(6、8)(7、8)﹣﹣﹣(9、8)9(5、9)(6、9)(7、9)(8、9)﹣﹣﹣所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,则P(恰好是两个连续整数)=故答案为.此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.16、5【解析】
【科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】∵161000=1.61×105.∴n=5.故答案为5.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17、10【解析】
首先证明△ABP∽△CDP,可得=,再代入相应数据可得答案.【详解】如图,由题意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=2米,BP=3米,PD=15米,∴=,解得:CD=10米.故答案为10.本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.18、(x–1)1【解析】试题分析:直接用完全平方公式分解即可,即x1﹣4x+4=(x﹣1)1.考点:分解因式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)1;(2)详见解析;(3)750;(4).【解析】
(1)用排球的人数÷排球所占的百分比,即可求出抽取学生的人数;(2)足球人数=学生总人数-篮球的人数-排球人数-羽毛球人数-乒乓球人数,即可补全条形统计图;(3)计算足球的百分比,根据样本估计总体,即可解答;(4)利用概率公式计算即可.【详解】(1)30÷15%=1(人).答:共抽取1名学生进行问卷调查;故答案为1.(2)足球的人数为:1﹣60﹣30﹣24﹣36=50(人),“足球球”所对应的圆心角的度数为360°×0.25=90°.如图所示:(3)3000×0.25=750(人).答:全校学生喜欢足球运动的人数为750人.(4)画树状图为:(用A、B、C、D、E分别表示篮球、足球、排球、羽毛球、乒乓球的五张卡片)共有25种等可能的结果数,选同一项目的结果数为5,所以甲乙两人中有且选同一项目的概率P(A)=.本题主要考查了条形统计图,扇形统计图以及用样本估计总体的应用,解题时注意:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.20、a2+2a,2【解析】
根据分式的减法和除法可以化简题目中的式子,然后根据a2+2a−2=2,即可解答本题.【详解】解:===a(a+2)=a2+2a,∵a2+2a﹣2=2,∴a2+2a=2,∴原式=2.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21、甲有钱,乙有钱.【解析】
设甲有钱x,乙有钱y,根据相等关系:甲的钱数+乙钱数的一半=50,甲的钱数的三分之二+乙的钱数=50列出二元一次方程组求解即可.【详解】解:设甲有钱,乙有钱.由题意得:,解方程组得:,答:甲有钱,乙有钱.本题考查了二元一次方程组的应用,读懂题意正确的找出两个相等关系是解决此题的关键.22、(1)补全统计表见解析;(2)该市2018年空气质量等级条形统计图见解析;(3)29天.【解析】
(1)由已知数据即可得;(2)根据统计表作图即可得;(3)全年365天乘以样本中“重度污染”和“严重污染”的天数和所占比例.【详解】(1)补全统计表如下:AQI0~5051~100101~150151~200201~250300以上质量等级A(优)B(良)C(轻度污染)D(中度污染)E(重度污染)F(严重污染)天数16207331(2)该市2018年空气质量等级条形统计图如下:(3)估计该市全年空气质量等级为“重度污染”和“严重污染”的天数为365×≈29天.本题考查了条形统计图的应用与用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.23、0【解析】
本题涉及负指数幂、二次根式化简和绝对值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】原式.本题主要考查负指数幂、二次根式化简和绝对值,熟悉掌握是关键.24、(1)证明见解析;(1)证明见解析;(3)1.【解析】
(1)连接OB、OC、OD,根据圆心角与圆周角的性质得∠BOD=1∠BAD,∠COD=1∠CAD,又AD平分∠BAC,得∠BOD=∠COD,再根据圆周角相等所对的弧相等得出结论.(1)过点O作OM⊥AD于点M,又一组角相等,再根据平行线的性质得出对应边成比例,进而得出结论;(3)延长EO交AB于点H,连接CG,连接OA,BC为⊙O直径,则∠G=∠CFE=∠FEG=90°,四边形CFEG是矩形,得EG=CF,又AD平分∠BAC,再根据邻补角与余角的性质可得∠BAF=∠ABE,∠ACF=∠CAF,AE=BE,AF=CF,再根据直角三角形的三角函数计算出边的长,根据“角角边”证明出△HBO∽△ABC,根据相似三角形的性质得出对应边成比例,进而得出结论.【详解】(1)如图1,连接OB、OC、OD,∵∠BAD和∠BOD是所对的圆周角和圆心角,∠CAD和∠COD是所对的圆周角和圆心角,∴∠BOD=1∠BAD,∠COD=1∠CAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴=;(1)如图1,过点O作OM⊥AD于点M,∴∠OMA=90°,AM=DM,∵BE⊥AD于点E,CF⊥AD于点F,∴∠CFM=90°,∠MEB=90°,∴∠OMA=∠MEB,∠CFM=∠OMA,∴OM∥BE,OM∥CF,∴BE∥OM∥CF,∴,∵OB=OC,∴=1,∴FM=EM,∴AM﹣FM=DM﹣EM,∴DE=AF;(3)延长EO交AB于点H,连接CG,连接OA.∵BC为⊙O直径,∴∠BAC=90°,∠G=90°,∴∠G=∠CFE=∠FEG=90°,∴四边形CFEG是矩形,∴EG=CF,∵AD平分∠BAC,∴∠BAF=∠CAF=×90°=45°,∴∠ABE=180°﹣∠BAF﹣∠AEB=45°,∠ACF=180°﹣∠CAF﹣∠AFC=45°,∴∠BAF=∠ABE,∠ACF=∠CAF,∴AE=BE,AF=CF,在Rt△ACF中,∠AFC=90°,∴sin∠CAF=,即sin45°=,∴CF=1×=,∴EG=,∴EF=1EG=1,∴AE=3,在Rt△AEB中,∠AEB=90°,∴AB==6,∵AE=BE,OA=OB,∴EH垂直平分AB,∴BH=EH=3,∵∠OHB=∠BAC,∠ABC=∠ABC∴△HBO∽△ABC,∴,∴OH=1,∴OE=EH﹣OH=3﹣1=1.本题考查了相似三角形的判定与性质和圆的相关知识点,解题的关键是熟练的掌握相似三角形的判定与性质和圆的相关知识点.25、(1)生产产品8件,生产产品2件;(2)有两种方案:方案①,种产品2件,则种产品8件;方案②,种产品3件,则种产品7件.【解析】
(1)设生产种产品件,则生产种产品件,根据“工厂计划获利14万元”列出方程即可得出结论;(2)设生产产品件,则生产产品件,根据题意,列出一元一次不等式组,求出y的取值范围,即可求出方案.【详解】解:(1)设生产种产品件,则生产种产品件,依题意得:,解得:,则,答:生产产品8件,生产产品2件;(2)设生产产品件,则生产产品件,解得:.因为为正整数,故或3;答:共有两种方案:方案①,种产品2件,则种产品8件;方案②,种产品3件,则种产品7件.此题考查的是一元一次方程的应用和一元一次不等式组的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.26、(1)W=;(2)李师傅第8天创造的利润最大,最大利润是324元;(3)李师傅共可获得160
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度健身服务会员合同说明
- 2024年度特许经营合同(具体经营范围和许可条件)
- 2024年度旅游服务管理合同
- 2024年度智能工厂生产线升级与维护合同
- 2024年度深圳光伏发电项目合同
- 自行车减震器市场需求与消费特点分析
- 水上起重机市场需求与消费特点分析
- 04版两托盘租赁合同:租赁物的维修与保养责任
- 化妆用过氧化氢市场发展现状调查及供需格局分析预测报告
- 2024年度二手房交易新政推行合同
- 幼儿秋冬季常见病及预防
- 《房建项目交底安全》课件
- 2024-2030年中国粮食仓储设备行业供需状况及未来发展策略分析报告
- 物理:第十三章《电路初探》复习(苏科版九年级上)省公开课获奖课件市赛课比赛一等奖课件
- 9.1增强安全意识 教学设计 2024-2025学年统编版道德与法治七年级上册
- 华南理工大学《微积分Ⅰ(二)》2021-2022学年第一学期期末试卷
- 2024-2030年配电自动化行业市场发展现状分析及竞争格局与投资价值研究报告
- 2.2-《做更好的自己》 课件-2024-2025学年统编版道德与法治七年级上册
- 详解2024年全国教育大会精神课件
- 2024年共青团团课考试题库及答案
- (高清版)TDT 1013-2013 土地整治项目验收规程
评论
0/150
提交评论