版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题09对数与对数函数【高频考点解读】1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化为自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点.3.知道对数函数是一类重要的函数模型.4.了解指数函数y=ax与对数函数y=logax互为反函数(a>0,且a≠1).【热点题型】题型一对数式的运算【例1】求值:(1)eq\f(log89,log23);(2)(lg5)2+lg50·lg2;(3)eq\f(1,2)lgeq\f(32,49)-eq\f(4,3)lgeq\r(8)+lgeq\r(245).【提分秘籍】1.化同底是对数式变形的首选方向,其中经常用到换底公式及其推论.2.结合对数定义,适时进行对数式与指数式的互化.3.利用对数运算法则,在积、商、幂的对数与对数的和、差、倍之间进行转化.【举一反三】(1)若2a=5b=10,求eq\f(1,a)+eq\f(1,b)的值;(2)若xlog34=1,求4x+4-x的值.【热点题型】题型二对数函数图象及应用【例2】若实数a,b,c满足loga2<logb2<logc2,则下列关系中不可能成立的是()A.a<b<cB.b<a<cC.c<b<a D.a<c<b【提分秘籍】由对数函数的图象确定参数的方法已知对数型函数的图象研究其解析式及解析式中所含参数的取值范围问题,通常是观察图象,获得函数的单调性、对称性、奇偶性、经过的特殊点等,由此确定函数解析式以及其中所含参数的取值范围.【举一反三】已知函数若a、b、c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()(A)(1,10)(B)(5,6)(C)(10,12)(D)(20,24)【热点题型】题型三对数函数性质及应用例3.函数y=logax(a>0,且a≠1)在[2,4]上的最大值与最小值的差是1,则a的值为________.【提分秘籍】1.比较对数式大小的方法(1)若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,需对底数进行分类讨论.(2)若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.(3)若底数与真数都不同,则常借助1,0等中间量进行比较.2.当对数函数底数大小不确定时要注意分a>1与0<a<1两种情况讨论.【举一反三】(1)(设a=log32,b=log52,c=log23,则()A.a>c>b B.b>c>aC.c>b>a D.c>a>b(2)已知函数f(x)=|log2x|,正实数m,n满足m<n,且f(m)=f(n),若f(x)在区间[m2,n]上的最大值为2,则m,n的值分别为()A.eq\f(1,2),2 B.eq\f(1,2),4C.eq\f(\r(2),2),eq\r(2) D.eq\f(1,4),4【热点题型】题型四复合对数函数图象的应用【例4】已知函数f(x)=loga(2x+b-1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是()A.0<a-1<b<1B.0<b<a-1<1C.0<b-1<a<1D.0<a-1<b-1<1【举一反三】函数f(x)=-2lneq\f(1+x,1-x)的图象可能是()【热点题型】题型五与对数函数有关的复合函数单调性应用例5、若f(x)=lg(x2-2ax+1+a)在区间(-∞,1]上递减,则a的取值范围为()A.[1,2)B.[1,2]C.[1,+∞)D.[2,+∞)【答案】A【提分秘籍】1.求与对数函数有关的复合函数的单调性的步骤(1)确定定义域;(2)弄清函数是由哪些简单初等函数复合而成的,将复合函数分解成简单初等函数y=f(u),u=g(x);(3)分别确定这两个函数的单调区间;2.已知复合函数单调性求参数范围时,要注意真数大于0这一条件.【举一反三】设0<a<1,函数f(x)=loga(a2x-2ax-2),则使f(x)<0的x的取值范围是()A.(-∞,0) B.(0,+∞)C.(-∞,loga3) D.(loga3,+∞)【高考风向标】1.(·天津卷)函数f(x)=lgx2的单调递减区间是________.2.(·安徽卷)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(16,81)))eq\s\up12(-\f(3,4))+log3eq\f(5,4)+log3eq\f(4,5)=________.3.(·浙江卷)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图像可能是()4.(·福建卷)若函数y=logax(a>0,且a≠1)的图像如图所示,则下列函数图像正确的是()5.(·广东卷)等比数列{an}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=________.6.(·辽宁卷)已知a=2-eq\f(1,3),b=log2eq\f(1,3),c=logeq\f(1,2)eq\f(1,3),则()A.a>b>cB.a>c>bC.c>b>aD.c>a>b7.(·山东卷)已知函数y=loga(x+c)(a,c为常数,其中a>0,a≠1)的图像如图11所示,则下列结论成立的是()图11A.a>1,x>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<18.(·四川卷)已知b>0,log5b=a,lgb=c,5d=10,则下列等式一定成立的是()A.d=acB.a=cdC.c=adD.d=a+c9.(·重庆卷)若log4(3a+4b)=log2eq\r(ab),则a+b的最小值是()A.6+2eq\r(3)B.7+2eq\r(3)C.6+4eq\r(3)D.7+4eq\r(3)【随堂巩固】1.已知函数f(x)=ax+logax(a>0且a≠1)在[1,2]上的最大值与最小值之和为loga2+6,则a的值为()A.eq\f(1,2) B.eq\f(1,4)C.2 D.42.已知x=lnπ,y=log52,z=e-eq\f(1,2),则()A.x<y<z B.z<x<yC.z<y<x D.y<z<x3.若f(x)=logax在[2,+∞)上恒有f(x)>1,则实数a的取值范围是()A.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),1)) B.eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,2)))∪(1,2)C.(1,2) D.eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,2)))∪(2,+∞)4.已知函数f(x)满足:当x≥4时,f(x)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))x;当x<4时,f(x)=f(x+1),则f(2+log23)=()A.eq\f(1,24) B.eq\f(1,12)C.eq\f(1,8) D.eq\f(3,8)5.设函数f(x)=若f(m)<f(-m),则实数m的取值范围是()A.(-1,0)∪(0,1) B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞) D.(-∞,-1)∪(0,1)6.|1+lg0.001|+eq\r(lg2\f(1,3)-4lg3+4)+lg6-lg0.02的值为________.7.已知函数f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(3x+1,x≤0,log2x,x>0)),则使函数f(x)的图象位于直线y=1上方的x的取值范围是______________.8.设函数f(x)定义在实数集上,f(2-x)=f(x),且当x≥1时,f(x)=lnx,则feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3))),feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2))),f(2)的大小关系为________.(用“<”表示)9.若f(x)=x2-x+b,且f(log2a)=b,log2f(a)=2(a≠1).(1)求f(log2x)的最小值及对应的x值;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 婚内协议书(范本)
- 大学个人学习规划范文
- 过户车辆买卖合同
- 单身职工宿舍租赁合同书
- 大学集资购房建房合同
- 湖北省荆州市2024年七年级上学期期中数学试题【附答案】
- 第11课+辽宋夏金元的经济、社会与文化+课件-高中历史统编版(2019)必修中外历史纲要上册
- 湖南省部分学校2023-2024学年高二下学期7月期末地理试题2
- 工程项目剩余、废旧物资管理
- 山东省东营市2023-2024学年高二下学期7月期末考试生物
- 广告设计师培训教程课件
- 部编版统编版小学五年级上册语文学历案教学设计
- 宁波轨道交通
- 浅谈核心素养视角下高中语文课堂的构建
- 2023年江苏苏州市相城区人民法院公益性岗位招聘10人笔试备考试题及答案解析
- 锐捷产品线拓扑图标合集
- 四位数乘四位数乘法题500道
- 数学物理方法
- 混凝土的热工计算
- 文明之痕:流行病与公共卫生智慧树知到答案章节测试2023年四川大学
- 药品采购供应及药品储备情况
评论
0/150
提交评论