版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第8章模拟与多准则决策什么是决策模拟模拟分析原理系统:F()x1xn随机输入n随机输入1Y=F(x1,…,xn)输出Lorex制约公司灌装线毛利灌装偏差Lorex制约公司--灌装模拟试验随机数产生方法--基本原理x0.20.40.61F(x)
U=F(
)若随机变量
服从F(x),则U=F()服从(0,1)均匀分布,即
=F-1(U)随机数产生方法--(a,b)均匀分布f(x)xabU=F(
)x1F(x)
ab随机数产生方法--指数分布随机数产生方法--三角分布标准化f(x)xabc标准化:0b’1标准化随机数产生方法--随机变量计算abcx0.20.81F(x)0b’1x0.20.40.6U1F(x)b’随机数产生方法--随机变量值返回Excel中的随机数产生方法--均匀分布Excel中的随机数产生方法--三角分布Excel中的随机数产生方法--离散分布Excel中的随机数产生方法--指数分布Excel内置随机数发生器Excel模拟方法重复计算模拟运算表Excel模拟方法--重复计算次数随机数F(X)值12.671990.0691122.064540.1268832.589180.0750842.885710.0558253.140650.0432561.355250.2578871.869730.1541683.138080.0433794.144660.01585104.054660.01734均值0.08587标准差0.07103重复计算模拟=NORMINV(RAND(),2.5,1.2)=EXP(-B4)=NORMINV(RAND(),2.5,1.2)=EXP(-B8)=AVERAGE(C4:C13)=STDEVP(C4:C13)Excel模拟方法--模拟运算表1Excel模拟方法--模拟运算表2Excel模拟应用--新华书报亭新华书报亭准备订购一种杂志,已知批发价为7.5元/本,零售价为10元/本。若一周内无法售出,可退货,并可收回2.5元/本。现已知这种杂志一周的市场需求服从以下概率分布:该订多少,可获得最大期望利润?Excel模拟应用--项目投标某公司考虑参加一个工程项目的投标。已知完成标书的费用为350元;若中标,项目成本为10000元;现有其它4家公司同时参与竞标,估计每家对手公司的竞标价均服从a=10000、b=13000、c=30000的三角分布。是否参加竞标?竞标价如何确定?Lorex制约公司模拟分析--EXCEL模拟一周毛利:$297,876.74目标灌装量10.34550每桶(500公升)毛利:$162,328.45灌装标准差0.16每桶折合盎司169088平均灌装量10.34二类市场销售价($/盒)$186.00合格率0.99一类市场销售价($/盒)$148.801.00收入:10.3210.4110.3010.1110.48
一类市场$250,361.7410.2610.1710.1610.4210.65
二类市场$2,432.6610.3810.0310.4310.3010.28
合计$252,794.4010.0910.8510.5710.0810.48成本:10.2410.3310.4210.1310.35
原料$67,662.0010.3110.3510.4110.6210.24
混合直接人工成本$432.0010.4210.6510.0410.1910.22
混合间接人工成本$170.0010.3910.3710.2410.5510.50
混合管理费$1,698.0010.2010.3610.6410.1810.59
灌装材料费$17,983.4110.3110.4610.4710.2810.73
灌装直接人工成本$558.0310.1010.3210.5610.2910.32
灌装管理费$1,950.9310.5210.5410.2410.3710.49
二类包装人工成本$11.5810.3810.2410.4310.3310.50
合计$90,465.9510.0610.5010.0910.3010.24毛利:$162,328.4510.1010.4510.4610.0210.3910.1110.2210.3910.3210.18
灌装量合格率|灌装量10.340.990.002.004.006.008.0010.0012.00库存系统的模拟例1:某厂的库存问题某厂要确定生产所需要的一种主要原材料的库存水平。根据该厂有关部门核算,该原材料占有成本与储存费用为每件每周10元,订货成本为每批25元,缺货成本为每件30元。该厂的订货时间是一周的最后一个工作日,到货时间是下一周的第一个工作日,当前的库存控制政策是:对该原材料的再订购点为21件(即库存低于21件时进行订货),订购量的确定原则是保持库存水平为25件。例如当周末库存为20件时,则需订货5件,以保证下周的期初库存量为25件;当周末库存不低于21时则不订货。该厂发现,根据当前的订货政策,原材料占有成本与库存储存费用较高,所以希望通过调整订货政策降低成本。根据以往资料分析,该厂每周对该原材料的需求量是不确定的,其统计数见表11-1所示。库存系统的模拟需求量(件)次数概率累积概率随机数区间1819202122232428223418970.020.080.220.340.180.090.070.020.100.320.660.840.931.00[0.00,0.02)[0.02,0.10)[0.10,0.32)[0.32,0.66)[0.66,0.84)[0.84,0.93)[0.93,1.00)库存问题模拟模型ABCDEFGHIJ1金山机械厂的库存问题23原料库存费用及占有资金成本(元/件周)104订货成本(元/批)255缺货成本(元/件)3067再订购点(件)218库存水平(件)25910初期库存(件)20111213需求量14随机数下限随机数上限需求量(件)150.000.0218160.020.1019170.100.3220180.320.6621190.660.8422200.840.9323210.931.002422232425周数本周需求量(件)期初库存(件)期末库存(件)订货否平均库存(件)库存成本(元)订货成本(元)缺货费用(元)总成本(元)260
201
27121254114.514525017028221254114.514525017029320255115150250175102499819256115.5155250180102599921254114.51452501701026100022253114140250165第一步:输入已知数据首先在Excel的工作表上输入已知数据。在单元格D3:D5中分别输入原材料的库存费用与资金占有成本、订货成本和缺货成本;在单元格D7:D8中分别为再订点和库存水平;在单元格D10中输入期初库存;在单元格B15:D21中输入原材料需求量、以及根据其概率分布得到的对应的随机数区间,其中单元格D15:D21为需求量的各个可能值,单元格B15:B21和C15:C21分别为各需求量对应的随机数区间的下限与上限。第二步:生成一系列随机数,得到不可控输入变量的抽样值,本题中的不可控制输入变量是每周的原材料需求量。用单元格B27表示第一周的原材料需求量,在单元格B27中输入下述公式:=vloopup(rand(),$b$15:$d$21,3)于是得到按表11-1的概率分布的第一周需求量抽样值。将上述公式复制到单元格B28:B1026,得到从第2周到第1000周的需求量抽样值。第三步:模拟运算模拟运算从0周开始。假定用数字“1”表示“订货”,用数字“0”表示“不订货”,即:用单元格E26表示对第0周末是否订货的判断,在单元格E26中输入判断是否订货的公式:=if(D26<$D$7,”1”,”0”)上式表明,当周末的库存小于订货点时,则订货订货;否则,则不订货。本题中,初始的周末库存为20件,由于再订货点是21件,所以需要订货,即单元格E26=1。将上述公式复制到单元格E27:E1026,得到对于第一周到第1000周周末是否订货的判断。然后对第一周至第1000周的需求量的库存系统状况进行模拟。用单元格B27:B1026表示1000周的需求量,它是不确定的,已经在第二步中获得。用单元格C27:V1026表示各周的期初库存,它们取决于上周末是否订货,若上周末未订货,它应等于上周周末库存,若上周末已订货,则它应达到要求的库存水平,所以有:各周期初库存,在单元格C27中输入下述公式:=if(E26=”1”,$D$8,D26)得到第一周的期初库存。将上述公式复制至单元格C28:C1026,得到以后各周的期初库存。用单元格D27:D1026表示期末库存,当需求量小于期初库存时,它应等于(期初库存-需求量),当需求量大于期初库存时则为0。即:各周期末库存,在单元格D27中输入下述公式:=if(C27-B27>0,C27-B27,0)得到第一周的期末库存。将上述公式复制至单元格D28:D1026,得到以后各周的期末库存。用单元格E27:E1026表示是否需要订货,前面已输入了它的公式。ABCDE25周数本周需求量(件)期初库存(件)期末库存(件)订货否260=$D$10=IF(D26<$D$7,”,”)27=1+A26=vloopup(rand(),$b$15:$d$21,3)=if(E26=”,$D$8,D26)=if(C27-B27>0,C27-B27,0)=IF(D27<$D$7,”,”)28=1+A27=vloopup(rand(),$b$15:$d$21,3)=if(E27=”,$D$8,D27)=if(C28-B28>0,C28-B28,0)=IF(D28<$D$7,”,”)29=1+A28=vloopup(rand(),$b$15:$d$21,3)=if(E28=”,$D$8,D28)=if(C29-B29>0,C29-B29,0)=IF(D29<$D$7,”,”)FGHIJ25平均库存(件)库存成本(元)订货成本(元)缺货费用(元)总成本2627=(C27+D27)/2=$D$3*F27=$D$4*E27=if(C27-B27>0,0,$D$5*(B27-C27))=SUM(G27:I27)28=(C28+D28)/2=$D$3*F28=$D$4*E28=if(C28-B28>0,0,$D$5*(B28-C28))=SUM(G28:I28)29=(C29+D29)/2=$D$3*F29=$D$4*E29=if(C29-B29>0,0,$D$5*(B29-C29))=SUM(G29:I29)FGHIJ1028库存成本(元)订货成本(元)缺货费用(元)库存成本(元)1029均值=average(G27:G1026)=average(H27:H1026)=average(I27:I1026)=average(J27:J1026)1030方差=stdev(G27:G1026)=stdev(H27:H1026)=stdev(I27:I1026)=stdev(J27:J1026)1031占总成本比例=G1029/$J$1029=H1029/$J$1029=I1029/$J$1029FGHIJ1028库存成本(元)订货成本(元)缺货费用(元)库存成本(元)1029均值144.6525.000.00169.651030方差6.840.000.006.841031占总成本比例0.850.150.00
BCDEF1033库存水平库存成本订货成本缺货成本总成本1034144.6525.000.00169.65103515103616106848106949107050BCDEF1033库存水平库存成本订货成本缺货成本总成本1034=G1029=H1029=I1029=J1029103515103616106848106949107050BCDEF1033库存水平库存成本订货成本缺货成本总成本1034144.725.00.0169.710351575.025.0183.3283.310361680.025.0154.2259.210371785.025.0125.3235.310381890.025.095.1210.110391995.125.066.2186.3104020100.625.037.2162.8104121107.025.017.3149.4104222115.425.07.2147.6104323124.425.02.5151.9104424134.525.00.0159.5104525144.425.00.0169.4104626154.225.00.0179.2104727164.425.00.0189.4104828174.725.00.0199.7104929184.625.00.0209.6105030194.425.00.0219.4105131204.925.00.0229.9105232214.325.00.0239.3105333224.625.00.0249.6105434234.525.00.0259.5105535244.225.00.0269.2105636254.225.00.0279.2105737264.425.00.0289.4105838274.525.00.0299.5105939280.424.50.5305.4106040279.823.11.3304.2106141256.718.93.6279.2106242235.615.34.1254.9106343230.813.73.2247.6106444232.812.91.7247.3106545239.412.51.0252.9106646249.512.50.2262.2106747258.312.50.1270.9106848269.612.50.0282.1106949278.712.50.0291.2107050288.412.50.0300.9第六步:结果分析从模拟结果可作出如下分析:(1)当库存水平从15件起逐渐增加时,缺货成本逐渐下降,库存成本逐渐上升,订货成本保持不变,其结果是总成本逐渐下降。当库存水平增加到22件时,每周的总成本(指总成本平均值,下同)达到局部最小值,为147元,比当前订货政策下的总成本节省了22元。(2)当库存水平从22件起继续增加时,缺货成本下降缓慢,最终下降到0,而库存成本继续上升,订货成本保持不变,其结果是总成本逐渐上升。当库存水平为39件时总成本达到最大值。(3)当库存水平从39件起继续增加时,缺货水平略有上升,而订货成本和库存成本均下降,这是因为库存水平较高时可以减少订货次数,同时,这时的平均库存也在下降,其结果是总成本逐渐下降。当库存水平增加到43至44件时,每周的平均总成本达到第二次局部最小值,约为246~249元。(4)当库存水平从44件起继续增加时,缺货成本略有下降,订货成本基本不变,而库存成本则有比较快的上升,所以,总成本上升。(5)根据题意,需求量的变化范围是18至24件,库存成本为每件10元,订货成本为每批25元,缺货成本为每件30元,所以库存水平从15件至50件的模拟范围已经可以包括各种可能的合理库存水平了。(6)综上所述,当前的订货政策尚需改进。最合理的库存水平为22件,即该厂的订货政策为:当每周的期末库存低于21件时,进行订货,而且订货量的确定原则是使得下周的期初库存为22件。从该例可见,采用模拟方法可以模拟库存系统的行为,从而分析库存政策。本题模拟了不同库存水平下的库存系统的行为。我们还可以利用模拟模型进一步模拟不同再订货点下的库存系统行为,用以分析最佳的再订货点。Theendofchapter11
第8章层次分析法什么是层次分析法
层次分析法(AHP)是美国运筹学家匹茨堡大学教授萨蒂(T.L.Saaty)于上世纪70年代初,为美国国防部研究“根据各个工业部门对国家福利的贡献大小而进行电力分配”课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。这种方法的特点是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。是对难于完全定量的复杂系统作出决策的模型和方法。决策是指在面临多种方案时需要依据一定的标准选择某一种方案。日常生活中有许多决策问题。举例
1.在海尔、新飞、容声和雪花四个牌号的电冰箱中选购一种。要考虑品牌的信誉、冰箱的功能、价格和耗电量。
2.在泰山、杭州和承德三处选择一个旅游点。要考虑景点的景色、居住的环境、饮食的特色、交通便利和旅游的费用。
3.在基础研究、应用研究和数学教育中选择一个领域申报科研课题。要考虑成果的贡献(实用价值、科学意义),可行性(难度、周期和经费)和人才培养。一、层次分析法概述二、层次分析法的基本原理三、层次分析法的步骤和方法四、层次分析法的广泛应用五、应用层次分析法的注意事项六、层次分析法应用实例层次分析法建模一、层次分析法概述人们在对社会、经济以及管理领域的问题进行系统分析时,面临的经常是一个由相互关联、相互制约的众多因素构成的复杂系统。层次分析法则为研究这类复杂的系统,提供了一种新的、简洁的、实用的决策方法。层次分析法(AHP法)是一种解决多目标的复杂问题的定性与定量相结合的决策分析方法。该方法将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。层次分析法是社会、经济系统决策中的有效工具。其特征是合理地将定性与定量的决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。是系统科学中常用的一种系统分析方法。该方法自1982年被介绍到我国以来,以其定性与定量相结合地处理各种决策因素的特点,以及其系统灵活简洁的优点,迅速地在我国社会经济各个领域内,如工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价、能源系统分析、城市规划、经济管理、科研评价等,得到了广泛的重视和应用。二、层次分析法的基本原理
层次分析法根据问题的性质和要达到的总目标,将问题分解为不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同层次聚集组合,形成一个多层次的分析结构模型,从而最终使问题归结为最低层(供决策的方案、措施等)相对于最高层(总目标)的相对重要权值的确定或相对优劣次序的排定。三、层次分析法的步骤和方法
运用层次分析法构造系统模型时,大体可以分为以下四个步骤:
1.建立层次结构模型
2.构造判断(成对比较)矩阵
3.层次单排序及其一致性检验
4.层次总排序及其一致性检验
1.建立层次结构模型
将决策的目标、考虑的因素(决策准则)和决策对象按它们之间的相互关系分为最高层、中间层和最低层,绘出层次结构图。
最高层:决策的目的、要解决的问题。
最低层:决策时的备选方案。
中间层:考虑的因素、决策的准则。对于相邻的两层,称高层为目标层,低层为因素层。下面举例说明。例1大学毕业生就业选择问题获得大学毕业学位的毕业生,在“双向选择”时,用人单位与毕业生都有各自的选择标准和要求。就毕业生来说选择单位的标准和要求是多方面的,例如:①能发挥自己才干作出较好贡献(即工作岗位适合发挥自己的专长);②工作收入较好(待遇好);③生活环境好(大城市、气候等工作条件等);④单位名声好(声誉等);⑤工作环境好(人际关系和谐等)⑥发展晋升机会多(如新单位或前景好)等。工作选择可供选择的单位P1’
P2,Pn
贡献收入发展声誉工作环境生活环境目标层准则层方案层目标层O(选择旅游地)P2黄山P1桂林P3北戴河准则层方案层C3居住C1景色C2费用C4饮食C5旅途例2.选择旅游地如何在3个目的地中按照景色、费用、居住条件等因素选择.
例3科研课题的选择
某研究所现有三个科研课题,限于人力及物力,只能研究一个课题。有三个须考虑的因素:(1)科研成果贡献大小(包括实用价值和科学意义);(2)人材的培养;(3)课题的可行性(包括课题的难易程度、研究周期及资金)。在这些因素的影响下,如何选择课题?
将决策问题分为3个或多个层次:最高层:目标层。表示解决问题的目的,即层次分析要达到的总目标。通常只有一个总目标。中间层:准则层、指标层、…。表示采取某种措施、政策、方案等实现预定总目标所涉及的中间环节;一般又分为准则层、指标层、策略层、约束层等。最低层:方案层。表示将选用的解决问题的各种措施、政策、方案等。通常有几个方案可选。每层有若干元素,层间元素的关系用相连直线表示。层次分析法的思维过程的归纳
层次分析法所要解决的问题是关于最低层对最高层的相对权重问题,按此相对权重可以对最低层中的各种方案、措施进行排序,从而在不同的方案中作出选择或形成选择方案的原则。2.构造判断(成对比较)矩阵
在确定各层次各因素之间的权重时,如果只是定性的结果,则常常不容易被别人接受,因而Santy等人提出:一致矩阵法,即:1.不把所有因素放在一起比较,而是两两相互比较2.对此时采用相对尺度,以尽可能减少性质不同的诸因素相互比较的困难,以提高准确度。心理学家认为成对比较的因素不宜超过9个,即每层不要超过9个因素。判断矩阵是表示本层所有因素针对上一层某一个因素的相对重要性的比较。判断矩阵的元素aij用Santy的1—9标度方法给出。判断矩阵元素aij的标度方法标度含义1表示两个因素相比,具有同样重要性3表示两个因素相比,一个因素比另一个因素稍微重要5表示两个因素相比,一个因素比另一个因素明显重要7表示两个因素相比,一个因素比另一个因素强烈重要9表示两个因素相比,一个因素比另一个因素极端重要2,4,6,8上述两相邻判断的中值倒数因素i与j比较的判断aij,则因素j与i比较的判断aji=1/aij
设要比较各准则C1,C2,…,Cn对目标O的重要性A~成对比较阵A是正互反阵要由A确定C1,…,Cn对O的权向量选择旅游地目标层O(选择旅游地)准则层C3居住C1景色C2费用C4饮食C5旅途C1C2C3C4C5C1C2C3C4C5稍加分析就发现上述成对比较矩阵有问题成对比较的不一致情况一致比较不一致允许不一致,但要确定不一致的允许范围考察完全一致的情况可作为一个排序向量成对比较满足的正互反阵A称一致阵。
A的秩为1,A的唯一非零特征根为n
非零特征根n所对应的特征向量归一化后可作为权向量对于不一致(但在允许范围内)的成对比较阵A,Saaty等人建议用对应于最大特征根
的特征向量作为权向量w,即一致阵性质但允许范围是多大?如何界定?3.层次单排序及其一致性检验
对应于判断矩阵最大特征根λmax的特征向量,经归一化(使向量中各元素之和等于1)后记为W。
W的元素为同一层次因素对于上一层次因素某因素相对重要性的排序权值,这一过程称为层次单排序。能否确认层次单排序,需要进行一致性检验,所谓一致性检验是指对A确定不一致的允许范围。
定理:n阶一致阵的唯一非零特征根为n定理:n
阶正互反阵A的最大特征根
n,当且仅当
=n时A为一致阵由于λ
连续的依赖于aij
,则λ
比n
大的越多,A的不一致性越严重。用最大特征值对应的特征向量作为被比较因素对上层某因素影响程度的权向量,其不一致程度越大,引起的判断误差越大。因而可以用λ-n
数值的大小来衡量A的不一致程度。定义一致性指标:CI=0,有完全的一致性CI接近于0,有满意的一致性CI越大,不一致越严重RI000.580.901.121.241.321.411.451.491.51
n1234567891110为衡量CI的大小,引入随机一致性指标RI。方法为Saaty的结果如下随机一致性指标RI则可得一致性指标随机构造500个成对比较矩阵一致性检验:利用一致性指标和一致性比率<0.1及随机一致性指标的数值表,对进行检验的过程。
一般,当一致性比率的不一致程度在容许范围之内,有满意的一致性,通过一致性检验。可用其归一化特征向量作为权向量,否则要重新构造成对比较矩阵A,对aij
加以调整。时,认为定义一致性比率:“选择旅游地”中准则层对目标的权向量及一致性检验准则层对目标的成对比较阵最大特征根
=5.073权向量(特征向量)w=(0.263,0.475,0.055,0.090,0.110)T一致性指标随机一致性指标RI=1.12(查表)一致性比率CR=0.018/1.12=0.016<0.1通过一致性检验正互反阵最大特征根和特征向量的简化计算
精确计算的复杂和不必要
简化计算的思路——一致阵的任一列向量都是特征向量,一致性尚好的正互反阵的列向量都应近似特征向量,可取其某种意义下的平均。和法——取列向量的算术平均列向量归一化求
行
和
归
一
化精确结果:w=(0.588,0.322,0.090)T,=3.0104.层次总排序及其一致性检验
计算某一层次所有因素对于最高层(总目标)相对重要性的权值,称为层次总排序。这一过程是从最高层次到最低层次依次进行的。对总目标Z的排序为的层次单排序为即B
层第i
个因素对总目标的权值为:层的层次总排序为:B层的层次总排序AB层次总排序的一致性检验设层对上层(层)中因素的层次单排序一致性指标为,随机一致性指为,则层次总排序的一致性比率为:当时,认为层次总排序通过一致性检验。层次总排序具有满意的一致性,否则需要重新调整那些一致性比率高的判断矩阵的元素取值。
到此,根据最下层(决策层)的层次总排序做出最后决策。记第2层(准则)对第1层(目标)的权向量为同样求第3层(方案)对第2层每一元素(准则)的权向量方案层对C1(景色)的成对比较阵方案层对C2(费用)的成对比较阵…Cn…Bn最大特征根
1=3.005
2=3.002
…
5
=3.0权向量w1(3)w2(3)…
w5(3)
=(0.595,0.277,0.129)=(0.082,0.236,0.682)=(0.166,0.166,0.668)选择旅游地第3层对第2层的计算结果
w(2)
0.2630.5950.2770.1293.0050.0030.00100.00503.0020.6820.2360.0820.47530.1420.4290.4290.0553.0090.1750.1930.6330.09030.6680.1660.1660.110组合权向量RI=0.58(n=3),
CIk
均可通过一致性检验方案P1对目标的组合权重为0.5950.263+…=0.300方案层对目标的组合权向量为(0.300,0.246,0.456)T1.建立层次结构模型该结构图包括目标层,准则层,方案层。层次分析法的基本步骤归纳如下3.计算单排序权向量并做一致性检验2.构造成对比较矩阵从第二层开始用成对比较矩阵和1~9尺度。对每个成对比较矩阵计算最大特征值及其对应的特征向量,利用一致性指标、随机一致性指标和一致性比率做一致性检验。若检验通过,特征向量(归一化后)即为权向量;若不通过,需要重新构造成对比较矩阵。计算最下层对最上层总排序的权向量。4.计算总排序权向量并做一致性检验进行检验。若通过,则可按照总排序权向量表示的结果进行决策,否则需要重新考虑模型或重新构造那些一致性比率较大的成对比较矩阵。利用总排序一致性比率四.层次分析法的广泛应用
应用领域:经济计划和管理,能源政策和分配,人才选拔和评价,生产决策,交通运输,科研选题,产业结构,教育,医疗,环境,军事等。
处理问题类型:决策、评价、分析、预测等。
建立层次分析结构模型是关键一步,要有主要决策层参与。
构造成对比较阵是数量依据,应由经验丰富、判断力强的专家给出。国家综合实力国民收入军事力量科技水平社会稳定对外贸易美、俄、中、日、德等大国工作选择贡献收入发展声誉关系位置供选择的岗位例1
国家实力分析例2
工作选择过河的效益
A经济效益B1社会效益B2环境效益B3节省时间C1收入C2岸间商业C3当地商业C4建筑就业C5安全可靠C6交往沟通C7自豪感C8舒适C9进出方便C10美化C11桥梁D1隧道D2渡船D3(1)过河效益层次结构例3
横渡江河、海峡方案的抉择过河的代价
A经济代价
B1环境代价B3社会代价B2投入资金C1操作维护C2冲击渡船业C3冲击生活方式C4交通拥挤C5居民搬迁C6汽车排放物C7对水的污染C8对生态的破坏C9桥梁D1隧道D2渡船D2(2)过河代价层次结构例3
横渡江河、海峡方案的抉择待评价的科技成果直接经济效益
C11间接经济效益
C12社会效益
C13学识水平
C21学术创新
C22技术水平
C23技术创新
C24效益C1水平C2规模C3科技成果评价例4科技成果的综合评价
层次分析法的优点系统性——将对象视作系统,按照分解、比较、判断、综合的思维方式进行决策。成为成为继机理分析、统计分析之后发展起来的系统分析的重要工具;
实用性——定性与定量相结合,能处理许多用传统的最优化技术无法着手的实际问题,应用范围很广,同时,这种方法使得决策者与决策分析者能够相互沟通,决策者甚至可以直接应用它,这就增加了决策的有效性;
简洁性——计算简便,结果明确,具有中等文化程度的人即可以了解层次分析法的基本原理并掌握该法的基本步骤,容易被决策者了解和掌握。便于决策者直接了解和掌握。五、应用层次分析法的注意事项层次分析法的局限囿旧——只能从原有的方案中优选一个出来,没有办法得出更好的新方案;
粗略——该法中的比较、判断以及结果的计算过程都是粗糙的,不适用于精度较高的问题。;
主观——从建立层次结构模型到给出成对比较矩阵,人主观因素对整个过程的影响很大,这就使得结果难以让所有的决策者接受。当然采取专家群体判断的办法是克服这个缺点的一种途径。六、层次分析法应用实例某单位拟从3名干部中选拔一名领导,选拔的标准有政策水平、工作作风、业务知识、口才、写作能力和健康状况。下面用AHP方法对3人综合评估、量化排序。目标层选一领导干部
准则层
方案层健康状况业务知识口才写作能力工作作风政策水平⑴建立层次结构模型健康情况业务知识写作能力口才政策水平工作作风健康情况业务知识写作能力口才政策水平工作作风A的最大特征值相应的特征向量为:⑵构造成对比较矩阵及层次单排序一致性指标随机一致性指标RI=1.24(查表)一致性比率CR=0.07/1.24=0.0565<0.1通过一致性检验假设3人关于6个标准的判断矩阵为:健康情况业务知识写作能力口才政策水平工作作风由此可求得各属性的最大特征值和相应的特征向量。特征值健康情况业务知识写作能力口才政策水平工作作风3.02
3.02
3.05
3.053.003.02各属性的最大特征值均通过一致性检验从而有即在3人中应选择A担任领导职务。⑶层次总排序及一致性检验旅游问题(1)建模分别分别表示景色、费用、居住、饮食、旅途。分别表示苏杭、北戴河、桂林。(2)构造成对比较矩阵(3)计算层次单排序的权向量和一致性检验成对比较矩阵的最大特征值表明通过了一致性验证。故则该特征值对应的归一化特征向量
对成对比较矩阵可以求层次总排序的权向量并进行一致性检验,结果如下:计算可知通过一致性检验。对总目标的权值为:(4)计算层次总排序权值和一致性检验又决策层对总目标的权向量为:同理得,对总目标的权值分别为:故,层次总排序通过一致性检验。可作为最后的决策依据。故最后的决策应为去桂林。又分别表示苏杭、北戴河、桂林,即各方案的权重排序为列向量归一化求和归一化精确计算,得六、层次分析法应用实例某单位拟从3名干部中选拔一名领导,选拔的标准有政策水平、工作作风、业务知识、口才、写作能力和健康状况。下面用AHP方法对3人综合评估、量化排序。目标层选一领导干部
准则层
方案层健康状况业务知识口才写作能力工作作风政策水平⑴建立层次结构模型健康情况业务知识写作能力口才政策水平工作作风健康情况业务知识写作能力口才政策水平工作作风A的最大特征值相应的特征向量为:⑵构造成对比较矩阵及层次单排序一致性指标随机一致性指标RI=1.24(查表)一致性比率CR=0.07/1.24=0.0565<0.1通过一致性检验假设3人关于6个标准的判断矩阵为:健康情况业务知识写作能力口才政策水平工作作风由此可求得各属性的最大特征值和相应的特征向量。特征值健康情况业务知识写作能力口才政策水平工作作风3.02
3.02
3.05
3.053.003.02各属性的最大特征值均通过一致性检验从而有即在3人中应选择A担任领导职务。⑶层次总排序及一致性检验旅游问题(1)建模分别分别表示景色、费用、居住、饮食、旅途。分别表示苏杭、北戴河、桂林。(2)构造成对比较矩阵(3)计算层次单排序的权向量和一致性检验成对比较矩阵的最大特征值表明通过了一致性验证。故则该特征值对应的归一化特征向量
对成对比较矩阵可以求层次总排序的权向量并进行一致性检验,结果如下:计算可知通过一致性检验。对总目标的权值为:(4)计算层次总排序权值和一致性检验又决策层对总目标的权向量为:同理得,对总目标的权值分别为:故,层次总排序通过一致性检验。可作为最后的决策依据。故最后的决策应为去桂林。又分别表示苏杭、北戴河、桂林,即各方案的权重排序为层次分析法在彩票抽奖
方案选择中的应用
2002年全国大学生数学建模竞赛B题:
已知29种彩票抽奖方案,要求综合分析各种奖项出现的可能性、奖项和奖金额的设置以及对彩民的吸引力等因素评价各方案的合理性,设计一种“更好”的方案及相应的算法。
一、问题的提出
已给的29种方案分为两种类型
1、“传统型”采用“10选6+1”方案:投注者从0~9十个号码中任选6个基本号码(可重复),从0~4中选一个特别号码,构成一注。根据单注号码与中奖号码相符的个数多少及顺序确定中奖等级;
表1:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 31511:2024 EN Requirements for contactless delivery services in cold chain logistics
- 淮阴师范学院《数字电子技术》2021-2022学年期末试卷
- 淮阴师范学院《历史学专业导论》2021-2022学年第一学期期末试卷
- 淮阴师范学院《武术A》2022-2023学年第一学期期末试卷
- 淮阴工学院《设计管理》2023-2024学年第一学期期末试卷
- DB4403T459-2024研发与标准化同步企业评价规范
- 常见客诉处理
- 托儿所服务的知识传授与认知发展考核试卷
- 以倾听为话题的话题作文600字
- 生物识别技术在空间探索中的应用考核试卷
- 沪科版(2024)八年级全一册物理第一学期期中学业质量测试卷 2套(含答案)
- 化工和危险化学品生产经营单位二十条重大隐患判定标准释义(中化协)
- 愚公移山英文 -中国故事英文版课件
- 一级直线倒立摆系统模糊控制器设计---实验指导书
- 梁纵筋水平最小锚固长度不足与固接条件的处理的设计优化
- 大坝基础面处理施工方案
- 动画运动规律自然现象
- 腹膜后间隙解剖及CT诊断
- 自动化控制仪表安装工程采用材料及机械价格表(2014版江苏省)
- 八卦象数疗法
- 鲁人版九年级道德与法治上册 2.3一年一度的人民代表大会
评论
0/150
提交评论