版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市东城区汇文中学2024-2025学年高三高考模拟试卷(二)数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若关于的不等式恰有1个整数解,则实数的最大值为()A.2 B.3 C.5 D.82.已知双曲线的一个焦点为,且与双曲线的渐近线相同,则双曲线的标准方程为()A. B. C. D.3.如图所示,正方体的棱,的中点分别为,,则直线与平面所成角的正弦值为()A. B. C. D.4.执行如图所示的程序框图,若输出的,则①处应填写()A. B. C. D.5.已知双曲线的两条渐近线与抛物线的准线分别交于点、,O为坐标原点.若双曲线的离心率为2,三角形AOB的面积为,则p=().A.1 B. C.2 D.36.运行如图所示的程序框图,若输出的值为300,则判断框中可以填()A. B. C. D.7.已知函数是奇函数,则的值为()A.-10 B.-9 C.-7 D.18.在一个数列中,如果,都有(为常数),那么这个数列叫做等积数列,叫做这个数列的公积.已知数列是等积数列,且,,公积为,则()A. B. C. D.9.若变量,满足,则的最大值为()A.3 B.2 C. D.1010.如图示,三棱锥的底面是等腰直角三角形,,且,,则与面所成角的正弦值等于()A. B. C. D.11.集合中含有的元素个数为()A.4 B.6 C.8 D.1212.已知双曲线的左、右焦点分别为、,抛物线与双曲线有相同的焦点.设为抛物线与双曲线的一个交点,且,则双曲线的离心率为()A.或 B.或 C.或 D.或二、填空题:本题共4小题,每小题5分,共20分。13.抛物线的焦点坐标为______.14.若直线与直线交于点,则长度的最大值为____.15.如图,是圆的直径,弦的延长线相交于点垂直的延长线于点.求证:16.已知命题:,,那么是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)当时,若恒成立,求的最大值;(2)记的解集为集合A,若,求实数的取值范围.18.(12分)如图,在四棱锥中,,,.(1)证明:平面;(2)若,,为线段上一点,且,求直线与平面所成角的正弦值.19.(12分)在平面四边形(图①)中,与均为直角三角形且有公共斜边,设,∠,∠,将沿折起,构成如图②所示的三棱锥,且使=.(1)求证:平面⊥平面;(2)求二面角的余弦值.20.(12分)为了解广大学生家长对校园食品安全的认识,某市食品安全检测部门对该市家长进行了一次校园食品安全网络知识问卷调查,每一位学生家长仅有一次参加机会,现对有效问卷进行整理,并随机抽取出了200份答卷,统计这些答卷的得分(满分:100分)制出的频率分布直方图如图所示,由频率分布直方图可以认为,此次问卷调查的得分服从正态分布,其中近似为这200人得分的平均值(同一组数据用该组区间的中点值作为代表).(1)请利用正态分布的知识求;(2)该市食品安全检测部门为此次参加问卷调查的学生家长制定如下奖励方案:①得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费:②每次获赠的随机话费和对应的概率为:获赠的随机话费(单位:元)概率市食品安全检测部门预计参加此次活动的家长约5000人,请依据以上数据估计此次活动可能赠送出多少话费?附:①;②若;则,,.21.(12分)的内角,,的对边分别为,,,已知的面积为.(1)求;(2)若,,求的周长.22.(10分)如图,已知三棱柱中,与是全等的等边三角形.(1)求证:;(2)若,求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
画出函数的图象,利用一元二次不等式解法可得解集,再利用数形结合即可得出.【详解】解:函数,如图所示当时,,由于关于的不等式恰有1个整数解因此其整数解为3,又∴,,则当时,,则不满足题意;当时,当时,,没有整数解当时,,至少有两个整数解综上,实数的最大值为故选:D本题主要考查了根据函数零点的个数求参数范围,属于较难题.2.B【解析】
根据焦点所在坐标轴和渐近线方程设出双曲线的标准方程,结合焦点坐标求解.【详解】∵双曲线与的渐近线相同,且焦点在轴上,∴可设双曲线的方程为,一个焦点为,∴,∴,故的标准方程为.故选:B此题考查根据双曲线的渐近线和焦点求解双曲线的标准方程,易错点在于漏掉考虑焦点所在坐标轴导致方程形式出错.3.C【解析】
以D为原点,DA,DC,DD1分别为轴,建立空间直角坐标系,由向量法求出直线EF与平面AA1D1D所成角的正弦值.【详解】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1的棱长为2,则,,,取平面的法向量为,设直线EF与平面AA1D1D所成角为θ,则sinθ=|,直线与平面所成角的正弦值为.故选C.本题考查了线面角的正弦值的求法,也考查数形结合思想和向量法的应用,属于中档题.4.B【解析】
模拟程序框图运行分析即得解.【详解】;;.所以①处应填写“”故选:B本题主要考查程序框图,意在考查学生对这些知识的理解掌握水平.5.C【解析】试题分析:抛物线的准线为,双曲线的离心率为2,则,,渐近线方程为,求出交点,,,则;选C考点:1.双曲线的渐近线和离心率;2.抛物线的准线方程;6.B【解析】
由,则输出为300,即可得出判断框的答案【详解】由,则输出的值为300,,故判断框中应填?故选:.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.7.B【解析】
根据分段函数表达式,先求得的值,然后结合的奇偶性,求得的值.【详解】因为函数是奇函数,所以,.故选:B本题主要考查分段函数的解析式、分段函数求函数值,考查数形结合思想.意在考查学生的运算能力,分析问题、解决问题的能力.8.B【解析】
计算出的值,推导出,再由,结合数列的周期性可求得数列的前项和.【详解】由题意可知,则对任意的,,则,,由,得,,,,因此,.故选:B.本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.9.D【解析】
画出约束条件的可行域,利用目标函数的几何意义求解最大值即可.【详解】解:画出满足条件的平面区域,如图示:如图点坐标分别为,目标函数的几何意义为,可行域内点与坐标原点的距离的平方,由图可知到原点的距离最大,故.故选:D本题考查了简单的线性规划问题,考查数形结合思想,属于中档题.10.A【解析】
首先找出与面所成角,根据所成角所在三角形利用余弦定理求出所成角的余弦值,再根据同角三角函数关系求出所成角的正弦值.【详解】由题知是等腰直角三角形且,是等边三角形,设中点为,连接,,可知,,同时易知,,所以面,故即为与面所成角,有,故.故选:A.本题主要考查了空间几何题中线面夹角的计算,属于基础题.11.B【解析】解:因为集合中的元素表示的是被12整除的正整数,那么可得为1,2,3,4,6,,12故选B12.D【解析】
设,,根据和抛物线性质得出,再根据双曲线性质得出,,最后根据余弦定理列方程得出、间的关系,从而可得出离心率.【详解】过分别向轴和抛物线的准线作垂线,垂足分别为、,不妨设,,则,为双曲线上的点,则,即,得,,又,在中,由余弦定理可得,整理得,即,,解得或.故选:D.本题考查了双曲线离心率的求解,涉及双曲线和抛物线的简单性质,考查运算求解能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
变换得到,计算焦点得到答案.【详解】抛物线的标准方程为,,所以焦点坐标为.故答案为:本题考查了抛物线的焦点坐标,属于简单题.14.【解析】
根据题意可知,直线与直线分别过定点,且这两条直线互相垂直,由此可知,其交点在以为直径的圆上,结合图形求出线段的最大值即可.【详解】由题可知,直线可化为,所以其过定点,直线可化为,所以其过定点,且满足,所以直线与直线互相垂直,其交点在以为直径的圆上,作图如下:结合图形可知,线段的最大值为,因为为线段的中点,所以由中点坐标公式可得,所以线段的最大值为.故答案为:本题考查过交点的直线系方程、动点的轨迹问题及点与圆的位置关系;考查数形结合思想和运算求解能力;根据圆的定义得到交点在以为直径的圆上是求解本题的关键;属于中档题.15.证明见解析.【解析】试题分析:四点共圆,所以,又△∽△,所以,即,得证.试题解析:A.连接,因为为圆的直径,所以,又,则四点共圆,所以.又△∽△,所以,即,∴.16.真命题【解析】
由幂函数的单调性进行判断即可.【详解】已知命题:,,因为在上单调递增,则,所以是真命题,故答案为:真命题本题主要考查了判断全称命题的真假,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)【解析】
(1)当时,由题意得到,令,分类讨论求得函数的最小值,即可求得的最大值.(2)由时,不等式恒成立,转化为在上恒成立,得到,即可求解.【详解】(1)由题意,当时,由,可得,令,则只需,当时,;当时,;当时,;故当时,取得最小值,即的最大值为.(2)依题意,当时,不等式恒成立,即在上恒成立,所以,即,即,解得在上恒成立,则,所以,所示实数的取值范围是.本题主要考查了含绝对值的不等式的解法,以及不等式的恒成立问题的求解与应用,着重考查了转化思想,以及推理与计算能力.18.(1)证明见解析(2)【解析】
(1)利用线段长度得到与间的垂直关系,再根据线面垂直的判定定理完成证明;(2)以、、为轴、轴、轴建立空间直角坐标系,利用直线的方向向量与平面的法向量夹角的余弦值的绝对值等于线面角的正弦值,计算出结果.【详解】(1)∵,,∴,∴,∵,平面,∴平面(2)由(1)知,,又为坐标原点,分别以、、为轴、轴、轴建立空间直角坐标系,则,,,,,,,∵,∴,设是平面的一个法向量则,即,取得∴∴直线与平面所成的正弦值为本题考查线面垂直的证明以及用向量法求解线面角的正弦,难度一般.用向量方法求解线面角的正弦值时,注意直线方向向量与平面法向量夹角的余弦值的绝对值等于线面角的正弦值.19.(1)证明见解析;(2)【解析】
(1)取AB的中点O,连接,证得,从而证得C′O⊥平面ABD,再结合面面垂直的判定定理,即可证得平面⊥平面;(2)以O为原点,AB,OC所在的直线为y轴,z轴,建立的空间直角坐标系,求得平面和平面的法向量,利用向量的夹角公式,即可求解.【详解】(1)取AB的中点O,连接,,在Rt△和Rt△ADB中,AB=2,则=DO=1,又C′D=,所以,即⊥OD,又⊥AB,且AB∩OD=O,平面ABD,所以⊥平面ABD,又C′O⊂平面,所以平面⊥平面DAB(2)以O为原点,AB,OC所在的直线为y轴,z轴,建立如图所示的空间直角坐标系,则A(0,-1,0),B(0,1,0),C′(0,0,1),,所以,,,设平面的法向量为=(),则,即,代入坐标得,令,得,,所以,设平面的法向量为=(),则,即,代入坐标得,令,得,,所以,所以,所以二面角A-C′D-B的余弦值为.本题考查了面面垂直的判定与证明,以及空间角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.20.(1);(2)估计此次活动可能赠送出100000元话费【解析】
(1)根据正态分布的性质可求的值.(2)设某家长参加活动可获赠话费为元,利用题设条件求出其分布列,再利用公式求出其期望后可得计此次活动可能赠送出的话费数额.【详解】(1)根据题中所给的统计表,结合题中所给的条件,可以求得又,,所以;(2)根据题意,某家长参加活动可获赠话费的可能值有10,20,30,40元,且每位家长获得赠送1次、2次话费的概率都为,得10元的情况为低于平均值,概率,得20元的情况有两种,得分低于平均值,一次性获20元话费;得分不低于平均值,2次均获赠10元话费,概率,得30元的情况为:得分不低于平均值,一次获赠10元话费,另一次获赠20元话费,其概率为,得40元的其情况得分不低于平均值,两次机会均获20元话费,概率为.所以变量的分布列为:某家长获赠话费的期望为.所以估计此次活动可能赠送出100000元话费.本题考查正态分布、离散型随机变量的分布列及数学期望,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度企业办公设备及用品采购框架合同
- 电视接收器电视机市场发展预测和趋势分析
- 2024年度教育培训合同标的为课程开设与师资派遣
- 2024年度特许经营及技术服务合同标的详细描述
- 2024年度成都二手房屋买卖合同
- 2024年度家具行业物流运输合同
- 2024年度版权转让合同著作财产权变动
- 2024年度图书租赁合同:某大学图书馆与出版社之间的图书租赁
- 跨运车市场环境与对策分析
- 浮式生产储卸油装置市场需求与消费特点分析
- 7-11便利店商品目录大全
- 第9章-庭院生态工程
- 区直机关事业单位借调人员工作鉴定表
- 初中化学鲁教版九年级下册化学与健康单元复习
- GB/T 31586.1-2015防护涂料体系对钢结构的防腐蚀保护涂层附着力/内聚力(破坏强度)的评定和验收准则第1部分:拉开法试验
- 五年级班主任家长会发言稿PPT
- 涂料色浆MSDS-涂料色浆化学品安全技术说明书范本
- “三重一大”事项决策情况记录表
- 洁净手术室管理
- 重大危险源档案台账
- 科室会专用-元治-盐酸贝尼地平-产品介绍
评论
0/150
提交评论