版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
来宾市重点中学2022年中考数学模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市2.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是()A.a﹣d=b﹣c B.a+c+2=b+d C.a+b+14=c+d D.a+d=b+c3.一、单选题如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为()A.5 B.4 C.3 D.24.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A. B. C. D.5.下列四个图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.6.在下面的四个几何体中,左视图与主视图不相同的几何体是()A. B. C. D.7.某圆锥的主视图是一个边长为3cm的等边三角形,那么这个圆锥的侧面积是()A.4.5πcm2 B.3cm2 C.4πcm2 D.3πcm28.方程的解为()A.x=4 B.x=﹣3 C.x=6 D.此方程无解9.矩形ABCD的顶点坐标分别为A(1,4)、B(1,1)、C(5,1),则点D的坐标为()A.(5,5) B.(5,4) C.(6,4) D.(6,5)10.我们从不同的方向观察同一物体时,可能看到不同的图形,则从正面、左面、上面观察都不可能看到矩形的是()A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如果m,n互为相反数,那么|m+n﹣2016|=___________.12.如图,已知,D、E分别是边AB、AC上的点,且设,,那么______用向量、表示13.分解因式:8x²-8xy+2y²=_________________________.14.函数中自变量x的取值范围是___________.15.如图,四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=2,则CE的长为_______16.关于的一元二次方程有两个不相等的实数根,请你写出一个满足条件的值__________.三、解答题(共8题,共72分)17.(8分)某校对六至九年级学生围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.如图是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少学生进行了抽样调查?本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?若该校九年级共有200名学生,如图是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请估计全校六至九年级学生中最喜欢跳绳活动的人数约为多少?18.(8分)如图1,在等边三角形中,为中线,点在线段上运动,将线段绕点顺时针旋转,使得点的对应点落在射线上,连接,设(且).(1)当时,①在图1中依题意画出图形,并求(用含的式子表示);②探究线段,,之间的数量关系,并加以证明;(2)当时,直接写出线段,,之间的数量关系.19.(8分)如图,已知点D、E为△ABC的边BC上两点.AD=AE,BD=CE,为了判断∠B与∠C的大小关系,请你填空完成下面的推理过程,并在空白括号内注明推理的依据.解:过点A作AH⊥BC,垂足为H.∵在△ADE中,AD=AE(已知)AH⊥BC(所作)∴DH=EH(等腰三角形底边上的高也是底边上的中线)又∵BD=CE(已知)∴BD+DH=CE+EH(等式的性质)即:BH=又∵(所作)∴AH为线段的垂直平分线∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等)∴(等边对等角)20.(8分)某同学报名参加学校秋季运动会,有以下5个项目可供选择:径赛项目:100m、200m、1000m(分别用A1、A2、A3表示);田赛项目:跳远,跳高(分别用T1、T2表示).该同学从5个项目中任选一个,恰好是田赛项目的概率P为;该同学从5个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率P1,利用列表法或树状图加以说明;该同学从5个项目中任选两个,则两个项目都是径赛项目的概率P2为.21.(8分)已知:如图,在梯形ABCD中,AD∥BC,AB=DC,E是对角线AC上一点,且AC·CE=AD·BC.(1)求证:∠DCA=∠EBC;(2)延长BE交AD于F,求证:AB2=AF·AD.22.(10分)已知,抛物线y=ax2+c过点(-2,2)和点(4,5),点F(0,2)是y轴上的定点,点B是抛物线上除顶点外的任意一点,直线l:y=kx+b经过点B、F且交x轴于点A.(1)求抛物线的解析式;(2)①如图1,过点B作BC⊥x轴于点C,连接FC,求证:FC平分∠BFO;②当k=时,点F是线段AB的中点;(3)如图2,M(3,6)是抛物线内部一点,在抛物线上是否存在点B,使△MBF的周长最小?若存在,求出这个最小值及直线l的解析式;若不存在,请说明理由.23.(12分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.求证:PD是⊙O的切线;求证:△ABD∽△DCP;当AB=5cm,AC=12cm时,求线段PC的长.24.如图,AB是⊙O的直径,BC交⊙O于点D,E是弧的中点,AE与BC交于点F,∠C=2∠EAB.求证:AC是⊙O的切线;已知CD=4,CA=6,求AF的长.
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.2、A【解析】
观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.【详解】解:依题意,得:b=a+1,c=a+7,d=a+1.A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,选项A符合题意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,∴a+c+2=b+d,选项B不符合题意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,∴a+b+14=c+d,选项C不符合题意;D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,∴a+d=b+c,选项D不符合题意.故选:A.【点睛】考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键.3、B【解析】
根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.【详解】解:∵△ABC绕点A顺时针旋转
60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,∵AB=1,∴BE=1.故选B.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.4、D【解析】
过B点作BD⊥AC,如图,由勾股定理得,AB=,AD=,cosA===,故选D.5、D【解析】
根据轴对称图形与中心对称图形的概念判断即可.【详解】A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选D.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、B【解析】
由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.7、A【解析】
根据已知得出圆锥的底面半径及母线长,那么利用圆锥的侧面积=底面周长×母线长÷2求出即可.【详解】∵圆锥的轴截面是一个边长为3cm的等边三角形,∴底面半径=1.5cm,底面周长=3πcm,∴圆锥的侧面积=12×3π×3=4.5πcm2故选A.【点睛】此题主要考查了圆锥的有关计算,关键是利用圆锥的侧面积=底面周长×母线长÷2得出.8、C【解析】
先把分式方程化为整式方程,求出x的值,代入最简公分母进行检验.【详解】方程两边同时乘以x-2得到1-(x-2)=﹣3,解得x=6.将x=6代入x-2得6-2=4,∴x=6就是原方程的解.故选C【点睛】本题考查的是解分式方程,熟知解分式方程的基本步骤是解答此题的关键.9、B【解析】
由矩形的性质可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求点D坐标.【详解】解:∵四边形ABCD是矩形
∴AB∥CD,AB=CD,AD=BC,AD∥BC,
∵A(1,4)、B(1,1)、C(5,1),
∴AB∥CD∥y轴,AD∥BC∥x轴
∴点D坐标为(5,4)
故选B.【点睛】本题考查了矩形的性质,坐标与图形性质,关键是熟练掌握这些性质.10、C【解析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依此找到从正面、左面、上面观察都不可能看到矩形的图形.【详解】A、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;B、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;C、主视图为等腰梯形,左视图为等腰梯形,俯视图为圆环,从正面、左面、上面观察都不可能看到长方形,故本选项正确;D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误.故选C.【点睛】本题重点考查了三视图的定义考查学生的空间想象能力,关键是根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答.二、填空题(本大题共6个小题,每小题3分,共18分)11、1.【解析】试题分析:先用相反数的意义确定出m+n=0,从而求出|m+n﹣1|,∵m,n互为相反数,∴m+n=0,∴|m+n﹣1|=|﹣1|=1;故答案为1.考点:1.绝对值的意义;2.相反数的性质.12、【解析】
在△ABC中,,∠A=∠A,所以△ABC△ADE,所以DE=BC,再由向量的运算可得出结果.【详解】解:在△ABC中,,∠A=∠A,∴△ABC△ADE,∴DE=BC,∴=3=3∴=,故答案为.【点睛】本题考查了相似三角形的判定和性质以及向量的运算.13、1【解析】
提取公因式1,再对余下的多项式利用完全平方公式继续分解.完全平方公式:a1±1ab+b1=(a±b)1.【详解】8x1-8xy+1y²=1(4x1-4xy+y²)=1(1x-y)1.故答案为:1(1x-y)1【点睛】此题考查的是提取公因式法和公式法分解因式,本题关键在于提取公因式可以利用完全平方公式进行二次因式分解.14、x≤2【解析】试题解析:根据题意得:解得:.15、5或【解析】分析:由菱形的性质证出△ABD是等边三角形,得出BD=AB=6,由勾股定理得出,即可得出答案.详解:∵四边形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∴△ABD是等边三角形,∴BD=AB=6,∴∴∴∵点E在AC上,∴当E在点O左边时当点E在点O右边时∴或;故答案为或.点睛:考查菱形的性质,注意分类讨论思想在数学中的应用,不要漏解.16、1【解析】
先根据根的判别式求出c的取值范围,然后在范围内随便取一个值即可.【详解】解得所以可以取故答案为:1.【点睛】本题主要考查根的判别式,掌握根的判别式与根个数的关系是解题的关键.三、解答题(共8题,共72分)17、(1)50(2)36%(3)160【解析】
(1)根据条形图的意义,将各组人数依次相加即可得到答案;(2)根据条形图可直接得到最喜欢篮球活动的人数,除以(1)中的调查总人数即可得出其所占的百分比;(3)用样本估计总体,先求出九年级占全校总人数的百分比,然后求出全校的总人数;再根据最喜欢跳绳活动的学生所占的百分比,继而可估计出全校学生中最喜欢跳绳活动的人数.【详解】(1)该校对名学生进行了抽样调查.本次调查中,最喜欢篮球活动的有人,,∴最喜欢篮球活动的人数占被调查人数的.(3),人,人.答:估计全校学生中最喜欢跳绳活动的人数约为人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.18、(1)①;②;(2)【解析】
(1)①先根据等边三角形的性质的,进而得出,最后用三角形的内角和定理即可得出结论;②先判断出,得出,再判断出是底角为30度的等腰三角形,再构造出直角三角形即可得出结论;(2)同②的方法即可得出结论.【详解】(1)当时,①画出的图形如图1所示,∵为等边三角形,∴.∵为等边三角形的中线∴是的垂直平分线,∵为线段上的点,∴.∵,∴,.∵线段为线段绕点顺时针旋转所得,∴.∴.∴,∴;②;如图2,延长到点,使得,连接,作于点.∵,点在上,∴.∵点在的延长线上,,∴.∴.又∵,,∴.∴.∵于点,∴,.∵在等边三角形中,为中线,点在上,∴,即为底角为的等腰三角形.∴.∴.(2)如图3,当时,在上取一点使,∵为等边三角形,∴.∵为等边三角形的中线,∵为线段上的点,∴是的垂直平分线,∴.∵,∴,.∵线段为线段绕点顺时针旋转所得,∴.∴.∴,又∵,,∴.∴.∵于点,∴,.∵在等边三角形中,为中线,点在上,∴,∴.∴.【点睛】此题是几何变换综合题,主要考查了等边三角形的性质,三角形的内角和定理,全等三角形的判定和性质,等腰三角形的判定和性质,锐角三角函数,作出辅助线构造出全等三角形是解本题的关键.19、见解析【解析】
根据等腰三角形的性质与判定及线段垂直平分线的性质解答即可.【详解】过点A作AH⊥BC,垂足为H.∵在△ADE中,AD=AE(已知),AH⊥BC(所作),∴DH=EH(等腰三角形底边上的高也是底边上的中线).又∵BD=CE(已知),∴BD+DH=CE+EH(等式的性质),即:BH=CH.∵AH⊥BC(所作),∴AH为线段BC的垂直平分线.∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等).∴∠B=∠C(等边对等角).【点睛】本题考查等腰三角形的性质及线段垂直平分线的性质,等腰三角形的底边中线、底边上的高、顶角的角平分线三线合一;线段垂直平分线上的点到线段两端的距离相等;20、(1);(1);(3);【解析】
(1)直接根据概率公式求解;(1)先画树状图展示所有10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P1;(3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P1.【详解】解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;(1)画树状图为:共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,所以一个径赛项目和一个田赛项目的概率P1==;(3)两个项目都是径赛项目的结果数为6,所以两个项目都是径赛项目的概率P1==.故答案为.考点:列表法与树状图法.21、(1)见解析;(2)见解析.【解析】
(1)由AD∥BC得∠DAC=∠BCA,又∵AC·CE=AD·BC∴,∴△ACD∽△CBE,∴∠DCA=∠EBC,(2)由题中条件易证得△ABF∽△DAC∴,又∵AB=DC,∴【详解】证明:(1)∵AD∥BC,∴∠DAC=∠BCA,∵AC·CE=AD·BC,∴,∴△ACD∽△CBE,∴∠DCA=∠EBC,(2)∵AD∥BC,∴∠AFB=∠EBC,∵∠DCA=∠EBC,∴∠AFB=∠DCA,∵AD∥BC,AB=DC,∴∠BAD=∠ADC,∴△ABF∽△DAC,∴,∵AB=DC,∴.【点睛】本题重点考查了平行线的性质和三角形相似的判定,灵活运用所学知识是解题的关键.22、(1);(2)①见解析;②;(3)存在点B,使△MBF的周长最小.△MBF周长的最小值为11,直线l的解析式为.【解析】
(1)用待定系数法将已知两点的坐标代入抛物线解析式即可解答.(2)①由于BC∥y轴,容易看出∠OFC=∠BCF,想证明∠BFC=∠OFC,可转化为求证∠BFC=∠BCF,根据“等边对等角”,也就是求证BC=BF,可作BD⊥y轴于点D,设B(m,),通过勾股定理用表示出的长度,与相等,即可证明.②用表示出点的坐标,运用勾股定理表示出的长度,令,解关于的一元二次方程即可.(3)求折线或者三角形周长的最小值问题往往需要将某些线段代换转化到一条直线上,再通过“两点之间线段最短”或者“垂线段最短”等定理寻找最值.本题可过点M作MN⊥x轴于点N,交抛物线于点B1,过点B作BE⊥x轴于点E,连接B1F,通过第(2)问的结论将△MBF的边转化为,可以发现,当点运动到位置时,△MBF周长取得最小值,根据求平面直角坐标系里任意两点之间的距离的方法代入点与的坐标求出的长度,再加上即是△MBF周长的最小值;将点的横坐标代入二次函数求出,再联立与的坐标求出的解析式即可.【详解】(1)解:将点(-2,2)和(4,5)分别代入,得:解得:∴抛物线的解析式为:.(2)①证明:过点B作BD⊥y轴于点D,设B(m,),∵BC⊥x轴,BD⊥y轴,F(0,2)∴BC=,BD=|m|,DF=∴BC=BF∴∠BFC=∠BCF又BC∥y轴,∴∠OFC=∠BCF∴∠BFC=∠OFC∴FC平分∠BFO.②(说明:写一个给1分)(3)存在点B,使△MBF的周长最小.过点M作MN⊥x轴于点N,交抛物线于点B1,过点B作BE⊥x轴于点E,连接B1F由(2)知B1F=B1N,BF=BE∴△MB1F的周长=MF+MB1+B1F=MF+MB1+B1N=MF+MN△MBF的周长=MF+MB+BF=MF+MB+BE根据垂线段最短可知:MN<MB+BE∴当点B在点B1处时,△MBF的周长最小∵M(3,6),F(0,2)∴,MN=6∴△MBF周长的最小值=MF+MN=5+6=11将x=3代入,得:∴B1(3,)将F(0,2)和B1(3,)代入y=kx+b,得:,解得:∴此时直线l的解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年西藏客运从业资格证下载那个APP可以刷题
- 2024年四川客运驾驶从业资格考试题库及答案详解
- 2024年上海大众汽车购销合同
- 2024年钻孔灌注桩施工合同模板3490字
- 2024年个人商铺租赁合同示范文本
- 2024年技师的合同
- 2024年全新公司股权期权协议书
- 2024年施工协议范文
- 2024年银行担保合同范本
- 2024年酒店后厨承包合同范本
- 小学部编版五年级语文上册教案(全)
- 高中体育与健康-足球变向运球教学课件设计
- 老人租房免责协议书
- 中印边境自卫反击战
- 管道试压方案样本
- 供电局电网预防雨雪冰冻灾害应急预案
- 内在激励与外在激励ppt
- 四年级下册英语人教PEP版课件U1-A Let's spell
- fas设备应急预案
- 《人文地理学》4 文化与人文地理学
- 电动汽车双轮驱动差速控制
评论
0/150
提交评论