版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省张家港市梁丰初级中学2022年中考数学全真模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为.小张这期间在该超市买商品获得了三次抽奖机会,则小张()A.能中奖一次 B.能中奖两次C.至少能中奖一次 D.中奖次数不能确定2.某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资,今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会()A.平均数和中位数不变 B.平均数增加,中位数不变C.平均数不变,中位数增加 D.平均数和中位数都增大3.若|a|=﹣a,则a为()A.a是负数 B.a是正数 C.a=0 D.负数或零4.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y35.若点A(2,),B(-3,),C(-1,)三点在抛物线的图象上,则、、的大小关系是()A.B.C.D.6.如图,在矩形ABCD中,AB=2,BC=1.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A. B. C. D.7.下列方程中有实数解的是()A.x4+16=0 B.x2﹣x+1=0C. D.8.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为A.40海里 B.60海里 C.70海里 D.80海里9.函数与在同一坐标系中的大致图象是()A、B、C、D、10.对于任意实数k,关于x的方程的根的情况为A.有两个相等的实数根 B.没有实数根C.有两个不相等的实数根 D.无法确定二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在矩形ABCD中,AB=,AD=1,把该矩形绕点A顺时针旋转α度得矩形AB′C′D′,点C′落在AB的延长线上,则图中阴影部分的面积是_____.12.如图,AB是半径为2的⊙O的弦,将沿着弦AB折叠,正好经过圆心O,点C是折叠后的上一动点,连接并延长BC交⊙O于点D,点E是CD的中点,连接AC,AD,EO.则下列结论:①∠ACB=120°,②△ACD是等边三角形,③EO的最小值为1,其中正确的是_____.(请将正确答案的序号填在横线上)13.如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O的半径为2,则CD的长为_____14.2018年春节期间,反季游成为出境游的热门,中国游客青睐的目的地仍主要集中在温暖的东南亚地区.据调查发现2018年春节期间出境游约有700万人,游客目的地分布情况的扇形图如图所示,从中可知出境游东南亚地区的游客约有________万人.15.当a<0,b>0时.化简:=_____.16.已知一粒米的质量是1.111121千克,这个数字用科学记数法表示为__________.三、解答题(共8题,共72分)17.(8分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?18.(8分)计算.19.(8分)如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.20.(8分)已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:△ACE∽△BDE;BE•DC=AB•DE.21.(8分)小强想知道湖中两个小亭A、B之间的距离,他在与小亭A、B位于同一水平面且东西走向的湖边小道I上某一观测点M处,测得亭A在点M的北偏东30°,亭B在点M的北偏东60°,当小明由点M沿小道I向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B恰好位于点Q的正北方向,根据以上测量数据,请你帮助小强计算湖中两个小亭A、B之间的距离.22.(10分)如图,圆O是的外接圆,AE平分交圆O于点E,交BC于点D,过点E作直线.(1)判断直线l与圆O的关系,并说明理由;(2)若的平分线BF交AD于点F,求证:;(3)在(2)的条件下,若,,求AF的长.23.(12分)已知关于x,y的二元一次方程组的解为,求a、b的值.24.如图,,,,求证:。
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】
由于中奖概率为,说明此事件为随机事件,即可能发生,也可能不发生.【详解】解:根据随机事件的定义判定,中奖次数不能确定故选D.【点睛】解答此题要明确概率和事件的关系:,为不可能事件;为必然事件;为随机事件.2、B【解析】
本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,平均数是指在一组数据中所有数据之和再除以数据的个数.【详解】解:设这家公司除经理外50名员工的工资和为a元,则这家公司所有员工去年工资的平均数是元,今年工资的平均数是元,显然;
由于这51个数据按从小到大的顺序排列的次序完全没有变化,所以中位数不变.
故选B.【点睛】本题主要考查了平均数,中位数的概念,要掌握这些基本概念才能熟练解题.同时注意到个别数据对平均数的影响较大,而对中位数和众数没影响.3、D【解析】
根据绝对值的性质解答.【详解】解:当a≤0时,|a|=-a,∴|a|=-a时,a为负数或零,故选D.【点睛】本题考查的是绝对值的性质,①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.4、D【解析】
先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x1,判断出三点所在的象限,再根据函数的增减性即可得出结论.【详解】∵反比例函数y=中,k=1>0,∴此函数图象的两个分支在一、三象限,∵x1<x2<0<x1,∴A、B在第三象限,点C在第一象限,∴y1<0,y2<0,y1>0,∵在第三象限y随x的增大而减小,∴y1>y2,∴y2<y1<y1.故选D.【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键.5、C【解析】首先求出二次函数的图象的对称轴x==2,且由a=1>0,可知其开口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以.总结可得.故选C.点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数的图象性质.6、B【解析】
根据S△ABE=S矩形ABCD=1=•AE•BF,先求出AE,再求出BF即可.【详解】如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=1,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=1=•AE•BF,∴BF=.故选:B.【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.7、C【解析】
A、B是一元二次方程可以根据其判别式判断其根的情况;C是无理方程,容易看出没有实数根;D是分式方程,能使得分子为零,分母不为零的就是方程的根.【详解】A.中△=02﹣4×1×16=﹣64<0,方程无实数根;B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程无实数根;C.x=﹣1是方程的根;D.当x=1时,分母x2-1=0,无实数根.故选:C.【点睛】本题考查了方程解得定义,能使方程左右两边相等的未知数的值叫做方程的解.解答本题的关键是针对不同的方程进行分类讨论.8、D【解析】分析:依题意,知MN=40海里/小时×2小时=80海里,∵根据方向角的意义和平行的性质,∠M=70°,∠N=40°,∴根据三角形内角和定理得∠MPN=70°.∴∠M=∠MPN=70°.∴NP=NM=80海里.故选D.9、D.【解析】试题分析:根据一次函数和反比例函数的性质,分k>0和k<0两种情况讨论:当k<0时,一次函数图象过二、四、三象限,反比例函数中,-k>0,图象分布在一、三象限;当k>0时,一次函数过一、三、四象限,反比例函数中,-k<0,图象分布在二、四象限.故选D.考点:一次函数和反比例函数的图象.10、C【解析】判断一元二次方程的根的情况,只要看根的判别式的值的符号即可:∵a=1,b=,c=,∴.∴此方程有两个不相等的实数根.故选C.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】
∵在矩形ABCD中,AB=,∠DAC=60°,∴DC=,AD=1.由旋转的性质可知:D′C′=,AD′=1,∴tan∠D′AC′==,∴∠D′AC′=60°.∴∠BAB′=30°,∴S△AB′C′=×1×=,S扇形BAB′==.S阴影=S△AB′C′-S扇形BAB′=-.故答案为-.【点睛】错因分析
中档题.失分原因有2点:(1)不能准确地将阴影部分面积转化为易求特殊图形的面积;(2)不能根据矩形的边求出α的值.12、①②【解析】
根据折叠的性质可知,结合垂径定理、三角形的性质、同圆或等圆中圆周角与圆心的性质等可以判断①②是否正确,EO的最小值问题是个难点,这是一个动点问题,只要把握住E在什么轨迹上运动,便可解决问题.【详解】如图1,连接OA和OB,作OF⊥AB.
由题知:沿着弦AB折叠,正好经过圆心O
∴OF=OA=OB
∴∠AOF=∠BOF=60°
∴∠AOB=120°
∴∠ACB=120°(同弧所对圆周角相等)
∠D=∠AOB=60°(同弧所对的圆周角是圆心角的一半)
∴∠ACD=180°-∠ACB=60°
∴△ACD是等边三角形(有两个角是60°的三角形是等边三角形)
故,①②正确
下面研究问题EO的最小值是否是1
如图2,连接AE和EF
∵△ACD是等边三角形,E是CD中点
∴AE⊥BD(三线合一)
又∵OF⊥AB
∴F是AB中点
即,EF是△ABE斜边中线
∴AF=EF=BF
即,E点在以AB为直径的圆上运动.
所以,如图3,当E、O、F在同一直线时,OE长度最小
此时,AE=EF,AE⊥EF
∵⊙O的半径是2,即OA=2,OF=1
∴AF=(勾股定理)
∴OE=EF-OF=AF-OF=-1
所以,③不正确
综上所述:①②正确,③不正确.
故答案是:①②.【点睛】考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.13、【解析】
连接OA,OC,根据∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函数即可求得CD的长.【详解】解:连接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案为.【点睛】本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键.14、1【解析】分析:用总人数乘以样本中出境游东南亚地区的百分比即可得.详解:出境游东南亚地区的游客约有700×(1﹣16%﹣15%﹣11%﹣13%)=700×45%=1(万).故答案为1.点睛:本题主要考查扇形统计图与样本估计总体,解题的关键是掌握各项目的百分比之和为1,利用样本估计总体思想的运用.15、【解析】分析:按照二次根式的相关运算法则和性质进行计算即可.详解:∵,∴.故答案为:.点睛:熟记二次根式的以下性质是解答本题的关键:(1);(2)=.16、2.1×【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×11-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定.【详解】解:1.111121=2.1×11-2.
故答案为:2.1×11-2.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×11-n,其中1≤|a|<11,n由原数左边起第一个不为零的数字前面的1的个数所决定.三、解答题(共8题,共72分)17、(1)111,51;(2)11.【解析】
(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为411m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;(2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.【详解】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:解得:x=51,经检验x=51是原方程的解,则甲工程队每天能完成绿化的面积是51×2=111(m2),答:甲、乙两工程队每天能完成绿化的面积分别是111m2、51m2;(2)设应安排甲队工作y天,根据题意得:1.4y+×1.25≤8,解得:y≥11,答:至少应安排甲队工作11天.18、【解析】分析:先计算,再做除法,结果化为整式或最简分式.详解:.点睛:本题考查了分式的混合运算.解题过程中注意运算顺序.解决本题亦可先把除法转化成乘法,利用乘法对加法的分配律后再求和.19、证明过程见解析【解析】
要证明BE=CD,只要证明AB=AC即可,由条件可以求得△AEC和△ADB全等,从而可以证得结论.【详解】∵BD⊥AC于点D,CE⊥AB于点E,∴∠ADB=∠AEC=90°,在△ADB和△AEC中,∴△ADB≌△AEC(ASA)∴AB=AC,又∵AD=AE,∴BE=CD.考点:全等三角形的判定与性质.20、(1)答案见解析;(2)答案见解析.【解析】
(1)根据邻补角的定义得到∠BDE=∠ACE,即可得到结论;(2)根据相似三角形的性质得到,由于∠E=∠E,得到△ECD∽△EAB,由相似三角形的性质得到,等量代换得到,即可得到结论.本题解析:【详解】证明:(1)∵∠ADB=∠ACB,∴∠BDE=∠ACE,又∵∠E=∠E,∴△ACE∽△BDE;(2)∵△ACE∽△BDE∴,∵∠E=∠E,∴△ECD∽△EAB,∴,∴BE•DC=AB•DE.【点睛】本题考查相似三角形的判定与性质,熟练掌握判定定理是关键.21、1m【解析】
连接AN、BQ,过B作BE⊥AN于点E.在Rt△AMN和在Rt△BMQ中,根据三角函数就可以求得AN,BQ,求得NQ,AE的长,在直角△ABE中,依据勾股定理即可求得AB的长.【详解】连接AN、BQ,∵点A在点N的正北方向,点B在点Q的正北方向,∴AN⊥l,BQ⊥l,在Rt△AMN中:tan∠AMN=,∴AN=1,在Rt△BMQ中:tan∠BMQ=,∴BQ=30,过B作BE⊥AN于点E,则BE=NQ=30,∴AE=AN-BQ=30,在Rt△ABE中,AB2=AE2+BE2,AB2=(30)2+302,∴AB=1.答:湖中两个小亭A、B之间的距离为1米.【点睛】本题考查勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22、(1)直线l与相切,见解析;(2)见解析;(3)AF=.【解析】
连接由题意可证明,于是得到,由等腰三角形三线合一的性质可证明,于是可证明,故此
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《山西康庄项目提案》课件
- 复习真题卷01 第1-2单元 (解析版)
- 《电子测量技术》课件
- 来凤县旧司乡中心卫生院配套设施建设可研报告
- 《家庭伦理剧》课件
- 2014年高考语文试卷(山东)(空白卷)
- 《红岩》课件(中考名著)
- 美容美发服务销售心得
- 2023年-2024年员工三级安全培训考试题附答案(夺分金卷)
- 2023-2024年项目部治理人员安全培训考试题附下载答案
- 审计基础知识培训
- DB43 873-2014 箱式暖脚器标准
- 【学易金卷】2023-2024学年四年级数学上册期末全真模拟提高卷(三)(答题卡)(北师大版)
- 2024年煤矿安全管理人员(机电运输)考试题库(浓缩500题)
- 医疗废物管理制度(诊所)
- 《建筑施工现场环境与卫生标准》JGJ146-2013
- 上海市闸北区大宁国际小学小升初英语模拟试题(共10套)详细答案
- 人教版高中生物必修1-第1、2章测评(B)
- 2024年《经济学基础》复习考试复习题库(含答案)
- ktv入股合作协议书
- 2025年广东省春季高考学业水平考试数学试卷试题(含答案解析)
评论
0/150
提交评论