版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025年山东省枣庄三中高三第二次综合考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.我国古代数学著作《九章算术》有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第天长高尺,芜草第天长高尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是()(结果采取“只入不舍”的原则取整数,相关数据:,)A. B. C. D.2.的展开式中的一次项系数为()A. B. C. D.3.已知,则()A.5 B. C.13 D.4.已知,,,则()A. B. C. D.5.如图所示的程序框图输出的是126,则①应为()A. B. C. D.6.已知向量,,若,则()A. B. C. D.7.为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占2019年贫困户总数的比)及该项目的脱贫率见下表:实施项目种植业养殖业工厂就业服务业参加用户比脱贫率那么年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的()A.倍 B.倍 C.倍 D.倍8.在明代程大位所著的《算法统宗》中有这样一首歌谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样.马吃了牛的一半,羊吃了马的一半.”请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?()A. B. C. D.9.已知向量与的夹角为,,,则()A. B.0 C.0或 D.10.函数在上为增函数,则的值可以是()A.0 B. C. D.11.若,则函数在区间内单调递增的概率是()A.B.C.D.12.已知双曲线(,),以点()为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若,则的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数的图像上存在点,满足约束条件,则实数的最大值为__________.14.已知,分别是椭圆:()的左、右焦点,过左焦点的直线与椭圆交于、两点,且,,则椭圆的离心率为__________.15.在平面直角坐标系中,若双曲线经过点(3,4),则该双曲线的准线方程为_____.16.(x+y)(2x-y)5的展开式中x3y3的系数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,曲线,曲线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线、的极坐标方程;(2)在极坐标系中,射线与曲线,分别交于、两点(异于极点),定点,求的面积18.(12分)在①;②;③这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.在中,内角A,B,C的对边分别为a,b,c,且满足________________,,求的面积.19.(12分)小丽在同一城市开的2家店铺各有2名员工.节假日期间的某一天,每名员工休假的概率都是,且是否休假互不影响,若一家店铺的员工全部休假,而另一家无人休假,则调剂1人到该店维持营业,否则该店就停业.(1)求发生调剂现象的概率;(2)设营业店铺数为X,求X的分布列和数学期望.20.(12分)已知椭圆过点且椭圆的左、右焦点与短轴的端点构成的四边形的面积为.(1)求椭圆C的标准方程:(2)设A是椭圆的左顶点,过右焦点F的直线,与椭圆交于P,Q,直线AP,AQ与直线交于M,N,线段MN的中点为E.①求证:;②记,,的面积分别为、、,求证:为定值.21.(12分)据《人民网》报道,美国国家航空航天局(NASA)发文称,相比20年前世界变得更绿色了,卫星资料显示中国和印度的行动主导了地球变绿.据统计,中国新增绿化面积的来自于植树造林,下表是中国十个地区在去年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)单位:公顷地区造林总面积造林方式人工造林飞播造林新封山育林退化林修复人工更新内蒙61848431105274094136006903826950河北5833613456253333313507656533643河南14900297647134292241715376133重庆2263331006006240063333陕西297642184108336026386516067甘肃325580260144574387998新疆2639031181056264126647107962091青海178414160511597342629宁夏91531589602293882981335北京1906410012400039991053(1)请根据上述数据分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区;(2)在这十个地区中,任选一个地区,求该地区新封山育林面积占造林总面积的比值超过的概率;(3)在这十个地区中,从退化林修复面积超过一万公顷的地区中,任选两个地区,记X为这两个地区中退化林修复面积超过六万公顷的地区的个数,求X的分布列及数学期望.22.(10分)如图所示,四棱锥P﹣ABCD中,PC⊥底面ABCD,PC=CD=2,E为AB的中点,底面四边形ABCD满足∠ADC=∠DCB=90°,AD=1,BC=1.(Ⅰ)求证:平面PDE⊥平面PAC;(Ⅱ)求直线PC与平面PDE所成角的正弦值;(Ⅲ)求二面角D﹣PE﹣B的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
由题意可利用等比数列的求和公式得莞草与蒲草n天后长度,进而可得:,解出即可得出.【详解】由题意可得莞草与蒲草第n天的长度分别为据题意得:,解得2n=12,∴n21.故选:C.本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.2.B【解析】
根据多项式乘法法则得出的一次项系数,然后由等差数列的前项和公式和组合数公式得出结论.【详解】由题意展开式中的一次项系数为.故选:B.本题考查二项式定理的应用,应用多项式乘法法则可得展开式中某项系数.同时本题考查了组合数公式.3.C【解析】
先化简复数,再求,最后求即可.【详解】解:,,故选:C考查复数的运算,是基础题.4.B【解析】
利用指数函数和对数函数的单调性,将数据和做对比,即可判断.【详解】由于,,故.故选:B.本题考查利用指数函数和对数函数的单调性比较大小,属基础题.5.B【解析】试题分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=2+22+…+2n的值,并输出满足循环的条件.解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=2+22+…+2n的值,并输出满足循环的条件.∵S=2+22+…+21=121,故①中应填n≤1.故选B点评:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.6.A【解析】
利用平面向量平行的坐标条件得到参数x的值.【详解】由题意得,,,,解得.故选A.本题考查向量平行定理,考查向量的坐标运算,属于基础题.7.B【解析】
设贫困户总数为,利用表中数据可得脱贫率,进而可求解.【详解】设贫困户总数为,脱贫率,所以.故年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的倍.故选:B本题考查了概率与统计,考查了学生的数据处理能力,属于基础题.8.D【解析】
设羊户赔粮升,马户赔粮升,牛户赔粮升,易知成等比数列,,结合等比数列的性质可求出答案.【详解】设羊户赔粮升,马户赔粮升,牛户赔粮升,则成等比数列,且公比,则,故,,.故选:D.本题考查数列与数学文化,考查了等比数列的性质,考查了学生的运算求解能力,属于基础题.9.B【解析】
由数量积的定义表示出向量与的夹角为,再由,代入表达式中即可求出.【详解】由向量与的夹角为,得,所以,又,,,,所以,解得.故选:B本题主要考查向量数量积的运算和向量的模长平方等于向量的平方,考查学生的计算能力,属于基础题.10.D【解析】
依次将选项中的代入,结合正弦、余弦函数的图象即可得到答案.【详解】当时,在上不单调,故A不正确;当时,在上单调递减,故B不正确;当时,在上不单调,故C不正确;当时,在上单调递增,故D正确.故选:D本题考查正弦、余弦函数的单调性,涉及到诱导公式的应用,是一道容易题.11.B【解析】函数在区间内单调递增,,在恒成立,在恒成立,,函数在区间内单调递增的概率是,故选B.12.A【解析】
求出双曲线的一条渐近线方程,利用圆与双曲线的一条渐近线交于两点,且,则可根据圆心到渐近线距离为列出方程,求解离心率.【详解】不妨设双曲线的一条渐近线与圆交于,因为,所以圆心到的距离为:,即,因为,所以解得.故选A.本题考查双曲线的简单性质的应用,考查了转化思想以及计算能力,属于中档题.对于离心率求解问题,关键是建立关于的齐次方程,主要有两个思考方向,一方面,可以从几何的角度,结合曲线的几何性质以及题目中的几何关系建立方程;另一方面,可以从代数的角度,结合曲线方程的性质以及题目中的代数的关系建立方程.二、填空题:本题共4小题,每小题5分,共20分。13.1【解析】由题知x>0,且满足约束条件的图象为由图可知当与交于点B(2,1),当直线过B点时,m取得最大值为1.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.14.【解析】
设,则,,由知,,,作,垂足为C,则C为的中点,在和中分别求出,进而求出的关系式,即可求出椭圆的离心率.【详解】如图,设,则,,由椭圆定义知,,因为,所以,,作,垂足为C,则C为的中点,在中,因为,所以,在中,由余弦定理可得,,即,解得,所以椭圆的离心率为.故答案为:本题考查椭圆的离心率和直线与椭圆的位置关系;利用椭圆的定义,结合焦点三角形和余弦定理是求解本题的关键;属于中档题、常考题型.15.【解析】
代入求解得,再求准线方程即可.【详解】解:双曲线经过点,,解得,即.又,故该双曲线的准线方程为:.故答案为:.本题主要考查了双曲线的准线方程求解,属于基础题.16.40【解析】
先求出的展开式的通项,再求出即得解.【详解】设的展开式的通项为,令r=3,则,令r=2,则,所以展开式中含x3y3的项为.所以x3y3的系数为40.故答案为:40本题主要考查二项式定理求指定项的系数,意在考查学生对这些知识的理解掌握水平.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1),;(2).【解析】
(1)先把参数方程化成普通方程,再利用极坐标的公式把普通方程化成极坐标方程;(2)先利用极坐标求出弦长,再求高,最后求的面积.【详解】(1)曲线的极坐标方程为:,因为曲线的普通方程为:,曲线的极坐标方程为;(2)由(1)得:点的极坐标为,点的极坐标为,,点到射线的距离为的面积为.本题考查普通方程、参数方程与极坐标方程之间的互化,同时也考查了利用极坐标方程求解面积问题,考查计算能力,属于中等题.18.横线处任填一个都可以,面积为.【解析】
无论选哪一个,都先由正弦定理化边为角后,由诱导公式,展开后,可求得角,再由余弦定理求得,从而易求得三角形面积.【详解】在横线上填写“”.解:由正弦定理,得.由,得.由,得.所以.又(若,则这与矛盾),所以.又,得.由余弦定理及,得,即.将代入,解得.所以.在横线上填写“”.解:由及正弦定理,得.又,所以有.因为,所以.从而有.又,所以由余弦定理及,得即.将代入,解得.所以.在横线上填写“”解:由正弦定理,得.由,得,所以由二倍角公式,得.由,得,所以.所以,即.由余弦定理及,得.即.将代入,解得.所以.本题考查三角形面积公式,考查正弦定理、余弦定理,两角和的正弦公式等,正弦定理进行边角转换,求三角形面积时,①若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积;②若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.19.(1)(2)见解析,【解析】
(1)根据题意设出事件,列出概率,运用公式求解;(2)由题得,X的所有可能取值为,根据(1)和变量对应的事件,可得变量对应的概率,即可得分布列和期望值.【详解】(1)记2家小店分别为A,B,A店有i人休假记为事件(,1,2),B店有i人,休假记为事件(,1,2),发生调剂现象的概率为P.则,,.所以.答:发生调剂现象的概率为.(2)依题意,X的所有可能取值为0,1,2.则,,.所以X的分布表为:X012P所以.本题是一道考查概率和期望的常考题型.20.(1);(2)①证明见解析;②证明见解析【解析】
(1)解方程即可;(2)①设直线,,,将点的坐标用表示,证明即可;②分别用表示,,的面积即可.【详解】(1)解之得:的标准方程为:(2)①,,设直线代入椭圆方程:设,,,直线,直线,,,,,.②,所以.本题考查了直接法求椭圆的标准方程、直线与椭圆位置关系中的定值问题,在处理此类问题一般要涉及根与系数的关系,本题思路简单,但计算量比较大,是一道有一定难度的题.21.(1)人工造林面积与总面积比最大的地区为甘肃省,人工造林面积与总面积比最小的地区为青海省;(2);(3)分布列见详解,数学期望为【解析】
(1)通过数据的观察以及计算人工造林面积与造林总面积比值,可得结果.(2)通过数据的观察以及计算新封山育林面积与造林总面积比值,得出比值超过的地区个数,然后可得结果.(3)计算退化林修复面积超过
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东培正学院《形态构成》2023-2024学年第一学期期末试卷
- 广东农工商职业技术学院《制药工程学》2023-2024学年第一学期期末试卷
- 广东茂名幼儿师范专科学校《汽车电子控制技术》2023-2024学年第一学期期末试卷
- 广东茂名农林科技职业学院《机械制造技术基础冷》2023-2024学年第一学期期末试卷
- 人教版七年级下册英语单词
- 保定市2022高考英语阅读理解选练(4)答案
- 【高考解码】2021届高三生物二轮复习专题-物质跨膜运输、酶和ATP
- 【Ks5u发布】江苏省苏锡常镇四市2021届高三下学期教学情况调研(一)-化学-扫描版含答案
- 【Ks5u发布】江苏省徐州市2021届高三第三次质量检测-历史-扫描版含答案
- 【KS5U原创】新课标2021年高一化学暑假作业(七)
- 2025年沈阳水务集团招聘笔试参考题库含答案解析
- 2025年高三语文八省联考作文题目详解:7个立意、15个标题、5个素材
- 《科学与工程伦理》课件-1港珠澳大桥工程建设中的白海豚保护相关案例分析
- 肘关节镜手术
- 浙江省杭州市钱塘区2023-2024学年四年级上学期数学期末试卷
- 2024年北师大版四年级数学上学期学业水平测试期末测试卷(含答案)
- 《湖北省市政基础设施工程质量标准化图册》(燃气管网工程)
- 天车租赁合同范例
- 无机化学实验试题
- 多任务并行处理中的计算资源分配
- 第二单元《第8课循环结构-for循环》教学实录 -2023-2024学年浙教版(2020)初中信息技术八年级上册
评论
0/150
提交评论