版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省四平伊通县联考2021-2022学年中考猜题数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是()A.y1 B.y2 C.y3 D.y42.如图给定的是纸盒的外表面,下面能由它折叠而成的是()A. B. C. D.3.一个正多边形的内角和为900°,那么从一点引对角线的条数是()A.3 B.4 C.5 D.64.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30° B.45° C.60° D.75°5.如图,一段抛物线:y=﹣x(x﹣5)(0≤x≤5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为(
)A.4 B.﹣4 C.﹣6 D.66.下列计算正确的是A.a2·a2=2a4B.(-a2)3=-a6C.3a2-6a2=3a2D.(a-2)2=a2-47.估算的运算结果应在(
)A.2到3之间 B.3到4之间C.4到5之间 D.5到6之间8.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同9.从1、2、3、4、5、6这六个数中随机取出一个数,取出的数是3的倍数的概率是()A. B. C. D.10.下列运算结果正确的是()A.a3+a4=a7 B.a4÷a3=a C.a3•a2=2a3 D.(a3)3=a6二、填空题(共7小题,每小题3分,满分21分)11.分解因式:4a2﹣1=_____.12.计算=________.13.如图,数轴上点A表示的数为a,化简:a_____.14.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.15.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.16.如图,在△ABC中,∠C=120°,AB=4cm,两等圆⊙A与⊙B外切,则图中两个扇形的面积之和(即阴影部分)为cm2(结果保留π).17.某商场将一款品牌时装按标价打九折出售,可获利80%,这款商品的标价为1000元,则进价为________元。三、解答题(共7小题,满分69分)18.(10分)如图,在平面直角坐标系中,矩形DOBC的顶点O与坐标原点重合,B、D分别在坐标轴上,点C的坐标为(6,4),反比例函数y=(x>0)的图象经过线段OC的中点A,交DC于点E,交BC于点F.(1)求反比例函数的解析式;(2)求△OEF的面积;(3)设直线EF的解析式为y=k2x+b,请结合图象直接写出不等式k2x+b>的解集.19.(5分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.求证:DE=AB;以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求EG的长.20.(8分)如图,在Rt△ABC的顶点A、B在x轴上,点C在y轴上正半轴上,且A(-1,0),B(4,0),∠ACB=90°.(1)求过A、B、C三点的抛物线解析式;(2)设抛物线的对称轴l与BC边交于点D,若P是对称轴l上的点,且满足以P、C、D为顶点的三角形与△AOC相似,求P点的坐标;(3)在对称轴l和抛物线上是否分别存在点M、N,使得以A、O、M、N为顶点的四边形是平行四边形,若存在请直接写出点M、点N的坐标;若不存在,请说明理由.图1备用图21.(10分)在2018年韶关市开展的“善美韶关•情暖三江”的志愿者系列括动中,某志愿者组织筹集了部分资金,计划购买甲、乙两种书包若干个送给贫困山区的学生,已知每个甲种书包的价格比每个乙种书包的价格贵10元,用350元购买甲种书包的个数恰好与用300元购买乙种书包的个数相同,求甲、乙两种书包每个的价格各是多少元?22.(10分)如图,在正方形ABCD中,E为对角线AC上一点,CE=CD,连接EB、ED,延长BE交AD于点F.求证:DF2=EF•BF.23.(12分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.24.(14分)阅读(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是________;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】
由图象的点的坐标,根据待定系数法求得解析式即可判定.【详解】由图象可知:抛物线y1的顶点为(-2,-2),与y轴的交点为(0,1),根据待定系数法求得y1=(x+2)2-2;抛物线y2的顶点为(0,-1),与x轴的一个交点为(1,0),根据待定系数法求得y2=x2-1;抛物线y3的顶点为(1,1),与y轴的交点为(0,2),根据待定系数法求得y3=(x-1)2+1;抛物线y4的顶点为(1,-3),与y轴的交点为(0,-1),根据待定系数法求得y4=2(x-1)2-3;综上,解析式中的二次项系数一定小于1的是y1故选A.【点睛】本题考查了二次函数的图象,二次函数的性质以及待定系数法求二次函数的解析式,根据点的坐标求得解析式是解题的关键.2、B【解析】
将A、B、C、D分别展开,能和原图相对应的即为正确答案:【详解】A、展开得到,不能和原图相对应,故本选项错误;B、展开得到,能和原图相对,故本选项正确;C、展开得到,不能和原图相对应,故本选项错误;D、展开得到,不能和原图相对应,故本选项错误.故选B.3、B【解析】
n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到关于边数的方程,从而求出边数,再求从一点引对角线的条数.【详解】设这个正多边形的边数是n,则
(n-2)•180°=900°,
解得:n=1.
则这个正多边形是正七边形.所以,从一点引对角线的条数是:1-3=4.故选B【点睛】本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.4、C【解析】试题分析:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C.考点:1矩形;2平行线的性质.5、C【解析】分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值,由2017÷5=403…2,可知点P(2018,m)在此“波浪线”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可.详解:当y=0时,﹣x(x﹣5)=0,解得x1=0,x2=5,则A1(5,0),∴OA1=5,∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…;如此进行下去,得到一“波浪线”,∴A1A2=A2A3=…=OA1=5,∴抛物线C404的解析式为y=(x﹣5×403)(x﹣5×404),即y=(x﹣2015)(x﹣2020),当x=2018时,y=(2018﹣2015)(2018﹣2020)=﹣1,即m=﹣1.故选C.点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.6、B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.【详解】A.a2·a2=a4,故A选项错误;B.(-a2)3=-a6,正确;C.3a2-6a2=-3a2,故C选项错误;D.(a-2)2=a2-4a+4,故D选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.7、D【解析】
解:=,∵2<<3,∴在5到6之间.故选D.【点睛】此题主要考查了估算无理数的大小,正确进行计算是解题关键.8、B【解析】
直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.9、B【解析】考点:概率公式.专题:计算题.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:从1、2、3、4、5、6这六个数中随机取出一个数,共有6种情况,取出的数是3的倍数的可能有3和6两种,故概率为2/6="1/"3.故选B.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)="m"/n.10、B【解析】
分别根据同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则对各选项进行逐一分析即可.【详解】A.a3+a4≠a7,不是同类项,不能合并,本选项错误;B.a4÷a3=a4-3=a;,本选项正确;C.a3•a2=a5;,本选项错误;D.(a3)3=a9,本选项错误.故选B【点睛】本题考查的是同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则等知识,比较简单.二、填空题(共7小题,每小题3分,满分21分)11、(2a+1)(2a﹣1)【解析】
有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.【详解】4a2﹣1=(2a+1)(2a﹣1).故答案为:(2a+1)(2a-1).【点睛】此题考查多项式因式分解,根据多项式的特点选择适合的分解方法是解题的关键.12、1【解析】试题解析:3-2=1.13、1.【解析】
直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可.【详解】由数轴可得:0<a<1,则a+=a+=a+(1﹣a)=1.故答案为1.【点睛】本题主要考查了二次根式的性质与化简,正确得出a的取值范围是解题的关键.14、15【解析】
分析:设输出结果为y,观察图形我们可以得出x和y的关系式为:,将y的值代入即可求得x的值.详解:∵当y=127时,解得:x=43;当y=43时,解得:x=15;当y=15时,解得不符合条件.则输入的最小正整数是15.故答案为15.点睛:考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键.15、【解析】试题解析:∵共6个数,小于5的有4个,∴P(小于5)==.故答案为.16、.【解析】
图中阴影部分的面积就是两个扇形的面积,圆A,B的半径为2cm,则根据扇形面积公式可得阴影面积.【详解】(cm2).故答案为.考点:1、扇形的面积公式;2、两圆相外切的性质.17、500【解析】
设该品牌时装的进价为x元,根据题意列出方程,求出方程的解得到x的值,即可得到结果.【详解】解:设该品牌时装的进价为x元,根据题意得:1000×90%-x=80%x,解得:x=500,则该品牌时装的进价为500元.故答案为:500.【点睛】本题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.三、解答题(共7小题,满分69分)18、(1)y=;(2);(3)<x<1.【解析】
(1)先利用矩形的性质确定C点坐标(1,4),再确定A点坐标为(3,2),根据反比例函数图象上点的坐标特征得到k1=1,即反比例函数解析式为y=;(2)利用反比例函数解析式确定F点的坐标为(1,1),E点坐标为(,4),然后根据△OEF的面积=S矩形BCDO﹣S△ODE﹣S△OBF﹣S△CEF进行计算;(3)观察函数图象得到当<x<1时,一次函数图象都在反比例函数图象上方,即k2x+b>.【详解】(1)∵四边形DOBC是矩形,且点C的坐标为(1,4),∴OB=1,OD=4,∵点A为线段OC的中点,∴A点坐标为(3,2),∴k1=3×2=1,∴反比例函数解析式为y=;(2)把x=1代入y=得y=1,则F点的坐标为(1,1);把y=4代入y=得x=,则E点坐标为(,4),△OEF的面积=S矩形BCDO﹣S△ODE﹣S△OBF﹣S△CEF=4×1﹣×4×﹣×1×1﹣×(1﹣)×(4﹣1)=;(3)由图象得:不等式不等式k2x+b>的解集为<x<1.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解即可.19、(1)详见解析;(2)36【解析】∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=CD,BC=AD,AD∥BC,∴∠EAD=∠AFB,∵DE⊥AF,∴∠AED=90°,在△ADE和△FAB中∠AED=∠B=90∴△ADE≌△FAB(AAS),∴AE=BF=1∵BF=FC=1∴BC=AD=2故在Rt△ADE中,∠ADE=30°,DE=3,∴EG的长=30×π×3180=20、见解析【解析】分析:(1)根据求出点的坐标,用待定系数法即可求出抛物线的解析式.(2)分两种情况进行讨论即可.(3)存在.假设直线l上存在点M,抛物线上存在点N,使得以A、O、M、N为顶点的四边形为平行四边形.分当平行四边形是平行四边形时,当平行四边形AONM是平行四边形时,当四边形AMON为平行四边形时,三种情况进行讨论.详解:(1)易证,得,∴OC=2,∴C(0,2),∵抛物线过点A(-1,0),B(4,0)因此可设抛物线的解析式为将C点(0,2)代入得:,即∴抛物线的解析式为(2)如图2,当时,则P1(,2),当时,∴OC∥l,∴,∴P2H=·OC=5,∴P2(,5)因此P点的坐标为(,2)或(,5).(3)存在.假设直线l上存在点M,抛物线上存在点N,使得以A、O、M、N为顶点的四边形为平行四边形.如图3,当平行四边形是平行四边形时,M(,),(,),当平行四边形AONM是平行四边形时,M(,),N(,),如图4,当四边形AMON为平行四边形时,MN与OA互相平分,此时可设M(,m),则∵点N在抛物线上,∴-m=-·(-+1)(--4)=-,∴m=,此时M(,),N(-,-).综上所述,M(,),N(,)或M(,),N(,)或M(,),N(-,-).点睛:属于二次函数综合题,考查相似三角形的判定与性质,待定系数法求二次函数解析式等,注意分类讨论的思想方法在数学中的应用.21、每件乙种商品的价格为1元,每件甲种商品的价格为70元【解析】
设每件甲种商品的价格为x元,则每件乙种商品的价格为(x-10)元,根据数量=总价÷单价结合用350元购买甲种书包的个数恰好与用300元购买乙种书包的个数相同,即可得出关于x的分式方程,解之并检验后即可得出结论.【详解】解:设每件甲种商品的价格为x元,则每件乙种商品的价格为(x﹣10)元,根据题意得:,解得:x=70,经检验,x=70是原方程的解,∴x﹣10=1.答:每件乙种商品的价格为1元,每件甲种商品的价格为70元.【点睛】本题考查了分式方程的应用,解题的关键是:根据数量=总价÷单价,列出分式方程.22、见解析【解析】
证明△FDE∽△FBD即可解决问题.【详解】解:∵四边形ABCD是正方形,∴BC=CD,且∠BCE=∠DCE,又∵CE是公共边,∴△BEC≌△DEC,∴∠BEC=∠DEC.∵CE=CD,∴∠DEC=∠EDC.∵∠BEC=∠DEC,∠BEC=∠AEF,∴∠EDC=∠AEF.∵∠AEF+∠FED=∠EDC+∠ECD,∴∠FED=∠ECD.∵四边形ABCD是正方形,∴∠ECD=∠BCD=45°,∠ADB=∠ADC=45°,∴∠ECD=∠ADB.∴∠FED=∠ADB.又∵∠BFD是公共角,∴△FDE∽△FBD,∴=,即DF2=EF•BF.【点睛】本题考查了相似三角形的判定与性质,和正方形的性质,正确理解正方形的性质是关键.23、(1)y=﹣x2+x+2;(2)m=﹣1或m=3时,四边形DMQF是平行四边形;(3)点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.【解析】
分析:(1)待定系数法求解可得;
(2)先利用待定系数法求出直线BD解析式为y=x-2,则Q(m,-m2+m+2)、M(m,m-2),由QM∥DF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;
(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得,再证△MBQ∽△BPQ得,即,解之即可得此时m的值;②∠BQM=90°,此时点Q与点A重合,△BOD∽△BQM′,易得点Q坐标.详解:(1)由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4),
将点C(0,2)代入,得:-4a=2,
解得:a=-,
则抛物线解析式为y=-(x+1)(x-4)=-x2+x+2;
(2)由题意知点D坐标为(0,-2),
设直线BD解析式为y=kx+b,
将B(4,0)、D(0,-2)代入,得:,解得:,
∴直线BD解析式为y=x-2,
∵QM⊥x轴,P(m,0),
∴Q(m,-m2+m+2)、M(m,m-2),
则QM=-m2+m+2-(m-2)=-m2+m+4,
∵F(0,)、D(0,-2),
∴DF=,
∵QM∥DF,
∴当-m2+m+4=时,四边形DMQF是平行四边形,
解得:m=-1(舍)或m=3,
即m=3时,四边形DMQF是平行四边形;
(3)如图所示:
∵QM∥DF,
∴∠ODB=∠QMB,
分以下两种情况:
①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,
则,
∵∠MBQ=90°,
∴∠MBP+∠PBQ=90°,
∵∠MPB=∠BPQ=90°,
∴∠MBP+∠BMP=90°,
∴∠BMP=∠PBQ,
∴△MBQ∽△BPQ,
∴,即,
解得:m1=3、m2=4,
当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,
∴m=3,点Q的坐标为(3,2);
②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,
此时m=-1,点Q的坐标为(-1,0);
综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用.【详解】请在此输入详解!24、(1)2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 居民家庭供暖供气合同3篇
- 新风系统合同范本3篇
- 安徽电气行业劳动合同模板3篇
- 旅游包车司机服务合同3篇
- 安装工程合同规定3篇
- 招生协议书合同模板3篇
- 新门面房买卖合同3篇
- 市政工程劳动分包合同范本3篇
- 工业园租赁合同格式定制3篇
- 招标文件评标方法的改进3篇
- 小学语文骨干教师专题讲座《自由阅读-开启快乐的读书之门》
- 南京审计大学金审学院《中级财务会计(上)》2022-2023学年第一学期期末试卷
- 2023年电信运营商液冷技术白皮书
- 2022年湖南省公务员录用考试《申论》真题(县乡卷)及答案解析
- 机场航班信息LED显示屏方案
- 软件系统运行维护体系方案
- 2024年六年级上册语文文言文阅读理解复习专项题
- GB/T 29038-2024薄壁不锈钢管道技术规范
- 教师成长案例数字赋能 创新教学 启智未来
- 2024-2025学年高一地理新教材必修1配套课件 第6章 第4节 地理信息技术在防灾减灾中的应用
- 10以内连加减口算练习题完整版139
评论
0/150
提交评论