版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
II卷非选择题(90分)填空题:本题共4小题,每小题5分,共20分。13.袋中共有4个除了颜色外完全相同的球,其中有1个红球、1个白球和2个黑球.从袋中任取两球,则两球颜色为一白一黑的概率为______;14.以抛物线的焦点为圆心,且与抛物线的准线相切的圆的方程是________15.函数(是正实数)只有一个零点,则的最大值为.16.在数列{an}中,已知,则数列{an}的通项公式an=________.三.解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必需作答。第22、23题为选考题,考生依据要求作答。(一)必考题:共60分17.(12分)如图,在梯形中,.(1)求的长;(2)求梯形的面积.18.(12分)依据水果市场的须要等因素,水果种植户把某种成熟后的水果按其直径的大小分为不同等级.某商家安排从该种植户那里购进一批这种水果销售.为了了解这种水果的质量等级状况,现随机抽取了100个这种水果,统计得到如下直径分布表(单位:mm):d等级三级品二级品一级品特级品特级品频数1m29n7用分层抽样的方法从其中的一级品和特级品共抽取6个,其中一级品2个.(1)估计这批水果中特级品的比例;(2)已知样本中这批水果不按等级混装的话20个约1斤,该种植户有20000斤这种水果待售,商家提出两种收购方案:方案A:以6.5元/斤收购;方案B:以级别分装收购,每袋20个,特级品8元/袋,一级品5元/袋,二级品4元/袋,三级品3元/袋.用样本的频率分布估计总体分布,问哪个方案种植户的收益更高?并说明理由.19.(12分)如图,四棱锥中,底面为梯形,,,,为等边三角形,点F为棱上的点.(1)若F为中点,求证:平面;(2)若,,三棱锥的体积为,求的值.20.(12分)已知椭圆的左、右焦点分别是,是其左右顶点,点是椭圆上任一点,且的周长为6,若面积的最大值为.(1)求椭圆的方程;(2)若过点且斜率不为0的直线交椭圆于两个不同点,证明:直线于的交点在一条定直线上.21.(12分)已知函数的导函数为,且.(1)求函数的解析式;(2)若函数区间上存在非负的极值,求的最大值.(二)选考题:共10分。请考生在第22、23题中任选一题作答。假如多做,则按所做的第一题计分。22.[选修4-4:坐标系与参数方程](10分)在直角坐标系中,直线过定点,且倾斜角为,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为.(1)写出的参数方程和的直角坐标方程;(2)若直线与曲线交于两点,且,求的值.23.[选修4-5:不等式选讲](10分)设函数.(1)求不等式的解集;(2)若函数的最大值为,且正实数、满意,求的最小值.
四川省叙州区其次中学高2025届其次次高考适应性考试文科数学参考答案1.D 2.D 3.A 4.C 5.C 6.C 7.B 8.D 9.C 10.B 11.D 12.D13. 14.15. 16.17.解:(1)因为,所以,即.因为,所以,所以.在中,由余弦定理得,,即,解得.(2)由(1)可得,所以,所以.因为且为锐角,所以,所以.由,得..在中,由正弦定理得,,所以,所以梯形的面积.18.(1)由题意,解得m=12,n=51,所以特级品的频率为,所以可估计这批水果中特级品的比例为58%;(2)选用方案A,种植户的收益为(元);选用方案B,由题意可得种植户的收益为:;由可得选择B方案种植户的收益更高.19.(1)如图所示:取中点M,连结,,,所以是平行四边形,平面,平面,平面.(2)因为,,,为等边三角形,所以,,又,,平面,又,所以平面平面,平面,平面,即A、D到平面距离相等,所以解得,所以.20.解:(1)由题意得椭圆的方程为;(2)由(1)得,,,设直线的方程为,,,由,得,,,,直线的方程为,直线的方程为,,,,直线与的交点在直线上.21.(1)令,,∴,∴,∴,代入可得,∴,∴.(2)由题意,∴,当即时,在上恒成立,∴在区间上单调递增,无极值,不合题意;当即时,令,则,∴当,,函数单调递减;,,函数单调递增;∴在存在唯一极值,又函数区间上存在非负的极值,∴存在,∴存在即,令,∴,∴当时,,单调递增;当时,,单调递减;∴,∴当即时,取最大值,∴的最大值为.22.解:(1)(2)把直线方程代入抛物线方程得:23.(1)因为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州省贵阳市花溪区高坡民族中学2024-2025学年度第一学期12月质量监测九年级数学试卷
- 2021年高考英语考点总动员系列-专题03-介词和介词短语(解析版)
- 【名师一号】2020-2021学年新课标化学必修一-综合能力检测4-非金属及其化合物
- 四年级数学(上)计算题专项练习及答案
- 2021高考地理二轮专项突破:自然地理事物特征描述和原理阐释(2)课后训练及详解
- 《肝硬化的临床表现》课件
- 【名师一号】2020-2021学年苏教版化学必修二双基限时练21-蛋白质和氨基酸
- 【2022届走向高考】高三数学一轮(北师大版)基础巩固:第4章-第7节-正弦定理、余弦定理的应用举例
- 《甲状腺术后的护理》课件
- 室内配线工年终工作总结计划汇报
- 2024年全国教育大会精神全文课件
- 四年级上册信息技术教案-9演示文稿巧编辑 |人教版
- 2022年人力资源管理各专业领域必备知识技能
- 租赁(出租)物品清单表
- 提高聚氯乙烯卷材地面一次验收合格率
- 【部编版】2022年语文七年级上:作文能力提升—谋篇布局(含答案)
- 甲型H1N1流感防治应急演练方案(1)
- 稀土高铁铝合金电力电缆应用参数.
- 陈振明《公共管理学》(课堂PPT)
- LU和QR分解法解线性方程组
- 漏油器外壳的落料、拉深、冲孔级进模的设计【毕业论文绝对精品】
评论
0/150
提交评论